Skip to main content

Viscous Fingering in a Hele–Shaw Cell

  • Chapter
  • First Online:
  • 782 Accesses

Part of the book series: Springer Series in Synergetics ((SSSYN))

Abstract

In this chapter, we study another interfacial phenomenon: the formation of viscous fingers in a Hele–Shaw cell. This phenomenon occurs in an entirely different physical system from dendritic growth, but it raises similar issues and can thus be treated using the same approach established in the previous chapters. We are interested in the study of this phenomenon in this book, not only because the subject itself occupies an important position in the field of pattern formation, but also because the resolution for this problem provides a keystone for analytically studying further pattern formation problems in solidification, such as cellular growth and eutectic growth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Ben-Jacob, R. Godbey, N.D. Goldenfield, J. Koplik, H. Levine, T. Mueller, L.M. Sander, Experimental demonstration of the role of anisotropy in interfacial pattern formation. Phys. Rev. Lett. 55, 1315–1318 (1985)

    Article  ADS  Google Scholar 

  2. D. Bensimon, Stability of viscous fingering. Phys. Rev. A 33, 1302–1308 (1986)

    Article  ADS  Google Scholar 

  3. D. Bensimon, P. Pelce, B.I. Shraiman, Dynamics of curved fronts and pattern selection. J. Phys. 48, 2081–2087 (1987)

    Article  Google Scholar 

  4. R.L. Chouke, P. Van Meurs, C. Van der Pol, The instability of slow immiscible viscous liquid-liquid displacements in permeable media. Trans. AIME 216, 188–194 (1959)

    Google Scholar 

  5. Y. Couder, N. Gerard, M. Rabaud, Narrow fingers in the Saffman–Taylor instability. Phys. Rev. A 34, 5175–5178 (1986)

    Article  ADS  Google Scholar 

  6. A.J. DeGregoria, L.W. Schwartz, A boundary integral method for two-phase displacement in Hele–Shaw cell. J. Fluid Mech. 164, 383–400 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. S. Hill, Channeling in packed columns. Chem. Eng. Sci. 1, 247–253 (1952)

    Article  MathSciNet  Google Scholar 

  8. G.M. Homsy, Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19, 271–311 (1987)

    Article  ADS  Google Scholar 

  9. D.C. Hong, J.S. Langer, Analytic theory of the selection mechanism in the Saffman–Taylor problem. Phys. Rev. Lett. 56, 2032–2035 (1986)

    Article  ADS  Google Scholar 

  10. S.D. Howison, A.A. Lacey, J.R. Ockendon, Hele–Shaw free boundary problems with suction. Q. J. Mech. Appl. Math. 41, 183–193 (1988)

    Article  MathSciNet  Google Scholar 

  11. D.A. Kessler, H. Levine, Stability of finger patterns in Hele–Shaw cells. Phys. Rev. A 32, 1930–1933 (1985)

    Article  ADS  Google Scholar 

  12. D.A. Kessler, H. Levine, Theory of the Saffman–Taylor finger pattern. Phys. Rev. A 33, 2621–2633 (1986)

    Article  ADS  Google Scholar 

  13. A.R. Kopf-Sill, G.M. Homsy, Narrow fingers in a Hele–Shaw cell. Phys. Fluids 30 (9), 2607–2609 (1987)

    Article  ADS  Google Scholar 

  14. M. Matsushita, H. Yamada, Dendritic growth of single viscous finger under the influence of linear anisotropy. J. Cryst. Growth 99, 161–165 (1990)

    Article  ADS  Google Scholar 

  15. J. Mclean, P.G. Saffman, The effect of surface tension on the shape of fingers in a Hele–Shaw cell. J. Fluid Mech. 102, 455–469 (1981)

    Article  ADS  MATH  Google Scholar 

  16. E. Meiburg, G.M. Homsy, Nonlinear unstable viscous fingers in Hele–Shaw cell: numerical simulation. Phys. Fluids 31 (3), 429–439 (1988)

    Article  ADS  MATH  Google Scholar 

  17. L.A. Romero, PhD. Thesis, California Institute of Technology (1981)

    Google Scholar 

  18. P.G. Saffman, Exact solution for the growth of fingers from a flat interface between two fluids. Q. J. Mech. Appl. Math. 12, 146–150 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  19. P.G. Saffman, G.I. Taylor, The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. Ser. A 245, 312–329 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. H. Segur, S. Tanveer, H. Levine (eds.), Asymptotics Beyond All Orders. NATO ASI Series, Series B: Physics, vol. 284 (Plenum, New York, 1991)

    Google Scholar 

  21. P. Tabling, G. Zocchi, A. Libchaber, An experimental study of the Saffman–Taylor instability. J. Fluid Mech. 177, 67–82 (1987)

    Article  ADS  Google Scholar 

  22. S. Tanveer, Analytic theory for the selection of a symmetric Saffman–Taylor instability. Phys. Fluids 30 (8), 1589–1605 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. J.-M. Vanden-Broeck, Fingers in a Hele–Shaw cell with surface tension. Phys. Fluids 26 (8), 2033–2034 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  24. J.J. Xu, Global instability of viscous fingering in a Hele–Shaw cell: formation of oscillatory fingers. Eur. J. Appl. Math. 2, 105–132 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. J.J. Xu, Interfacial wave theory for oscillatory finger’s formation in a Hele–Shaw cell: a comparison with experiments. Eur. J. Appl. Math. 7, 169–199 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. J.J. Xu, Interfacial instabilities and fingering formation in Hele–Shaw flow. IMA J. Appl. Math. 57, 101–135 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. J. Yokoyama, Y. Kitagawa, H. Yamada M. Matsushita, Dendritic growth of viscous fingers under linear anisotropy. Phys. A 204, 789–799 (1994)

    Article  Google Scholar 

  28. P.A. Zhuravlev, On the motion of a fluid in channels. Zap. Leningr. Gorn. In-ta. 33 (3), 54–61 (1956)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: The Forms of Some Operators in the System of the Curvilinear Coordinate System (ξ, η)

Appendix: The Forms of Some Operators in the System of the Curvilinear Coordinate System (ξ, η)

For the curvilinear coordinate system (ξ, η), we have

$$\displaystyle{ \mathbf{r} = X(\xi,\eta )\mathbf{i} + Y (\xi,\eta )\mathbf{j}, }$$
(9.200)

where i and j are the unit vectors along the x-axis and y-axis respectively. Let the vectors e 1, e 2 be the unit vectors along the ξ, η directions respectively. One can write

$$\displaystyle{ \begin{array}{lllllllllll} &&\mathbf{e}_{1} = \frac{\partial \mathbf{r}} {\partial \xi } \Big/\Big\vert \frac{\partial \mathbf{r}} {\partial \xi } \Big\vert = \frac{1} {\mathcal{G}}\left (X_{\xi }\mathbf{i} + Y _{\xi }\mathbf{j}\right ), \\ &&\mathbf{e}_{2} = \frac{\partial \mathbf{r}} {\partial \eta } \Big/\Big\vert \frac{\partial \mathbf{r}} {\partial \eta } \Big\vert = \frac{1} {\mathcal{G}}\left (X_{\eta }\mathbf{i} + Y _{\eta }\mathbf{j}\right )\;. \end{array} }$$
(9.201)

To derive the mathematical formulation of the problem in the coordinate system {ξ, η}, we denote the field function by \(\Phi = \Phi (\xi,\eta )\) and the interface shape by η = η s(ξ, t). We have the formulas

$$\displaystyle{ \begin{array}{lllllllllll} &&\quad \quad \nabla \Phi = \frac{\mathbf{e}_{1}} {\mathcal{G}} \frac{\partial \Phi } {\partial \xi } + \frac{\mathbf{e}_{2}} {\mathcal{G}} \frac{\partial \Phi } {\partial \eta }, \\ &&(\mathbf{j} \cdot \nabla )\Phi = \frac{1} {\mathcal{G}^{2}}\left (Y _{\xi }\frac{\partial \Phi } {\partial \xi } + X_{\xi }\frac{\partial \Phi } {\partial \eta } \right ), \end{array} }$$
(9.202)

as well as

$$\displaystyle{ \nabla ^{2}\Phi = \nabla \cdot (\nabla \Phi ) = \frac{1} {\mathcal{G}^{2}}\left (\frac{\partial ^{2}\Phi } {\partial \xi ^{2}} + \frac{\partial ^{2}\Phi } {\partial \eta ^{2}} \right ) }$$
(9.203)

and

$$\displaystyle{ \frac{\partial \Phi } {\partial n} = \mathbf{n} \cdot \nabla \Phi = \frac{1} {\big(1 + \eta _{\mathrm{s}}^{{\prime}}{}^{2}\big)^{1/2}\mathcal{G}}\left (\frac{\partial \Phi } {\partial \eta } -\eta _{\mathrm{s}}^{{\prime}}\frac{\partial \Phi } {\partial \xi } \right ). }$$
(9.204)

In the moving frame, the local growth speed at the interface is

$$\displaystyle\begin{array}{rcl} & & u_{\mathrm{I}} = - \frac{\frac{\partial s} {\partial t}} {\big\vert \nabla s\big\vert } = \mathcal{G} \frac{\frac{\partial \eta _{\mathrm{s}}} {\partial t}} {\big(1 + \eta _{\mathrm{s}}^{{\prime}}{}^{2}\big)^{1/2}},{}\end{array}$$
(9.205)
$$\displaystyle\begin{array}{rcl} & & \mathbf{j \cdot n} = \frac{Y _{\eta } - Y _{\xi }\eta _{\mathrm{s}}^{{\prime}}} {\mathcal{G}\big(1 + \eta _{\mathrm{s}}^{{\prime}}{}^{2}\big)^{1/2}}\;,{}\end{array}$$
(9.206)
$$\displaystyle{ \frac{\partial \Phi } {\partial n} = \mathbf{n} \cdot \nabla \Phi = \frac{1} {\big(1 + \eta _{\mathrm{s}}^{{\prime}}{}^{2}\big)^{1/2}\mathcal{G}}\left (\frac{\partial \Phi } {\partial \eta } -\eta _{\mathrm{s}}^{{\prime}}\frac{\partial \Phi } {\partial \xi } \right ). }$$
(9.207)

The curvature operator can be derived as

$$\displaystyle\begin{array}{rcl} \mathcal{K}\Big\{\eta _{\mathrm{s}}(\xi,t)\Big\}& =& - \frac{1} {\mathcal{G}(\xi,\eta _{\mathrm{s}})}\Bigg\{ \frac{\eta _{\mathrm{s}}^{{\prime\prime}}} {\big(1 + \eta _{\mathrm{s}}^{{\prime}}{}^{2}\big)^{3/2}} + \frac{\Pi _{0}(\xi,\eta _{\mathrm{s}})} {\mathcal{G}^{2}(\xi,\eta _{\mathrm{s}})\big(1 + \eta _{\mathrm{s}}^{{\prime}}{}^{2}\big)^{1/2}} \\ & & \ + \frac{\Pi _{1}(\xi,\eta _{\mathrm{s}})} {\mathcal{G}^{2}(\xi,\eta _{\mathrm{s}})\big(1 + \eta _{\mathrm{s}}^{{\prime}}{}^{2}\big)^{1/2}}\eta _{\mathrm{s}}^{{\prime}}\Bigg\}\,, {}\end{array}$$
(9.208)

where

$$\displaystyle{ \begin{array}{lllllllllll} \Pi _{0}(\xi,\eta ) =\big (Y _{\xi \xi }X_{\xi } - X_{\xi \xi }Y _{\xi }\big), \\ \Pi _{1}(\xi,\eta ) =\big (X_{\xi \xi }X_{\xi } + Y _{\xi \xi }Y _{\xi }\big). \end{array} }$$
(9.209)

Assume that as ε → 0,

$$\displaystyle{\eta _{\mathrm{B}}(\xi ) =\epsilon h_{1}(\xi ) + \cdots \,.}$$

We derive that

$$\displaystyle{ \mathcal{K}\{\eta _{\mathrm{B}}(\xi )\} = \mathcal{K}_{0}(\xi ) +\epsilon \mathcal{K}_{1}(\xi ) + \cdots \,, }$$
(9.210)

where

$$\displaystyle{ \left \{\begin{array}{lllllllllll} \mathcal{K}_{0}(\xi )& =& -\frac{\Pi _{0,0}} {\mathcal{G}_{0}^{3}}, \\ \mathcal{K}_{1}(\xi )& =&\frac{2\pi ^{2}\lambda _{0}(1 -\lambda _{0})} {\mathcal{G}_{0}^{3}\mathcal{R}_{0}} \Bigg[1 -\frac{2(1 -\lambda _{0})} {\lambda _{0}\mathcal{R}_{0}} + \frac{3\Pi _{0,0}} {\pi \mathcal{G}_{0}^{2}} \Bigg]h_{1}(\xi )\quad \\ &- &\frac{2\pi (1 -\lambda _{0})^{2}\tan ( \frac{\pi \xi }{2})} {\mathcal{R}_{0}\mathcal{G}_{0}^{3}} h_{1}^{{\prime}}(\xi ) - \frac{1} {\mathcal{G}_{0}}h_{1}^{{\prime\prime}}(\xi ). \end{array} \right. }$$
(9.211)

At the root point T, ξ = ±1, η = η T(t): since Y ξ (±1, η s) = −X η (±1, η s) = 0, the slope of the interface shape y s can be calculated as

$$\displaystyle{ \frac{\text{d}y_{\mathrm{s}}} {\mathrm{d}x} \Big\vert _{x=\pm W} = \frac{Y _{\xi } + Y _{\eta }\eta _{\mathrm{s}}^{{\prime}}} {X_{\xi } + X_{\eta }\eta _{\mathrm{s}}^{{\prime}}}\Big\vert _{X=\pm 1} =\eta _{ \mathrm{s}}^{{\prime}}(\pm 1). }$$
(9.212)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Xu, JJ. (2017). Viscous Fingering in a Hele–Shaw Cell. In: Interfacial Wave Theory of Pattern Formation in Solidification. Springer Series in Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-319-52663-8_9

Download citation

Publish with us

Policies and ethics