Skip to main content

Large Spatial Competition

  • Chapter
  • First Online:
Spatial Interaction Models

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 118))

Abstract

We consider spatial competition when consumers are arbitrarily distributed on a compact metric space. Retailers can choose one of finitely many locations in this space. We focus on symmetric mixed equilibria which exist for any number of retailers. We prove that the distribution of retailers tends to agree with the distribution of the consumers when the number of competitors is large enough. The results are shown to be robust to the introduction of (1) randomness in the number of retailers and (2) different ability of the retailers to attract consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are several real-life applications where the strategic behavior of the retailers is subject to feasibility constraints as, for instance, when zoning regulations are enforced. Land use regulation has been extensively analyzed in urban economics, mostly from an applied perspective. It is often argued that zoning can have anti-competitive effects and at the same time be beneficial since it might solve problems of externalities [see 31, for a recent work on this area].

  2. 2.

    Throughout, we assume that competition among retailers is only in terms of location, not price. We do this for several reasons. First, there exist several markets where price is not decided by retailers: think, for instance of newsvendors, shops operating under franchising, pharmacies in many countries, etc. Second, our model without pricing can be used to study other topics, e.g., political competition, when candidates have to take position on several, possibly related, issues. Finally several of the existing models that allow competition on location and pricing are two-stage models, where competition first happens on location and subsequently on price. Our game could be seen as a model of the first stage. It is interesting to notice that the recent paper by Heijnen and Soetevent [16] deals with the second stage in a location model on a graph, assuming that the first has already been solved.

  3. 3.

    Two main possibilities have been explored to solve for this lack of equilibrium: either alternative candidates’ objectives were considered (as in [6]) or the use of mixed strategies (as in [4]).

  4. 4.

    Formally, [26] prove that the symmetric equilibrium strategies satisfy the claim assuming that the consumers are distributed in the interval [0,1] according to any twice continuously differentiable distribution function.

References

  1. Aoyagi, M., Okabe, A.: Spatial competition of firms in a two-dimensional bounded market. Reg. Sci. Urban Econ. 23 (2), 259–289 (1993). doi:http://dx.doi.org/10.1016/0166-0462(93)90006-Z. http://dx.doi.org/10.1016/0166-0462(93)90006-Z

  2. Aragones, E., Palfrey, T.R.: Mixed equilibrium in a Downsian model with a favored candidate. J. Econ. Theory 103 (1), 131–161 (2002). doi:10.1006/jeth.2001.2821. http://dx.doi.org/10.1006/jeth.2001.2821

    Article  MathSciNet  MATH  Google Scholar 

  3. Aragonès, E., Xefteris, D.: Candidate quality in a Downsian model with a continuous policy space. Games Econ. Behav. 75 (2), 464–480 (2012). doi:10.1016/j.geb.2011.12.008. http://dx.doi.org/10.1016/j.geb.2011.12.008

    Article  MathSciNet  MATH  Google Scholar 

  4. Banks, J.S., Duggan, J., Le Breton, M.: Social choice and electoral competition in the general spatial model. J. Econ. Theory 126 (1), 194–234 (2006). doi:10.1016/j.jet.2004.08.001. http://dx.doi.org/10.1016/j.jet.2004.08.001

  5. Bernheim, B.D., Slavov, S.N.: A solution concept for majority rule in dynamic settings. Rev. Econ. Stud. 76 (1), 33–62 (2009). doi:10.1111/j.1467-937X.2008.00520.x. http://dx.doi.org/10.1111/j.1467-937X.2008.00520.x

    Article  MathSciNet  MATH  Google Scholar 

  6. Calvert, R.L.: Robustness of the multidimensional voting model: candidate motivations, uncertainty, and convergence. Am. J. Pol. Sci. 39 (1), 69–95 (1985)

    Article  Google Scholar 

  7. Crippa, G., Jimenez, C., Pratelli, A.: Optimum and equilibrium in a transport problem with queue penalization effect. Adv. Calc. Var. 2 (3), 207–246 (2009). doi:10.1515/ACV.2009.009. http://dx.doi.org/10.1515/ACV.2009.009

    Article  MathSciNet  MATH  Google Scholar 

  8. Downs, A.: An Economic Theory of Democracy. Harper and Row, New York (1957)

    Google Scholar 

  9. Dürr, C., Thang, N.K.: Nash equilibria in Voronoi games on graphs. In: European Symposium on Algorithms (2007)

    Book  MATH  Google Scholar 

  10. Eaton, B.C., Lipsey, R.G.: The principle of minimum differentiation reconsidered: some new developments in the theory of spatial competition. Rev. Econ. Stud. 42 (1), 27–49 (1975). http://www.jstor.org/stable/2296817

    Article  MATH  Google Scholar 

  11. Feldmann, R., Mavronicolas, M., Monien, B.: Nash equilibria for voronoi games on transitive graphs. In: Leonardi, S. (ed.) Internet and Network Economics. Lecture Notes in Computer Science, vol. 5929, pp. 280–291. Springer, Berlin, Heidelberg (2009). doi:10.1007/978-3-642-10841-9_26. http://dx.doi.org/10.1007/978-3-642-10841-9_26

    Chapter  Google Scholar 

  12. Fournier, G.: General distribution of consumers in pure Hotelling games (2016). https://arxiv.org/abs/1602.04851. arXiv 1602.04851

  13. Fournier, G., Scarsini, M.: Hotelling games on networks: existence and efficiency of equilibria (2016). http://dx.doi.org/10.2139/ssrn.2423345. sSRN 2423345

  14. Gouret, F., Hollard, G., Rossignol, S.: An empirical analysis of valence in electoral competition. Soc. Choice. Welf. 37 (2), 309–340 (2011). doi:10.1007/s00355-010-0495-0. http://dx.doi.org/10.1007/s00355-010-0495-0

    Article  MathSciNet  MATH  Google Scholar 

  15. Gur, Y., Saban, D., Stier-Moses, N.E.: The competitive facility location problem in a duopoly. Mimeo (2014)

    Google Scholar 

  16. Heijnen, P., Soetevent, A.R.: Price competition on graphs. Technical Report TI 2014-131/VII. Tinbergen Institute (2014). http://ssrn.com/abstract=2504454

  17. H&rner, J., Jamison, J.: Hotelling’s spatial model with finitely many consumers. Mimeo (2012)

    Google Scholar 

  18. Hotelling, H.: Stability in competition. Econ. J. 39 (153), 41–57 (1929). http://www.jstor.org/stable/2224214

    Google Scholar 

  19. Laster, D., Bennet, P., Geoum, I.: Rational bias in macroeconomic forecasts. Q. J. Econ. 45 (2), 145–186 (1999). doi:10.1007/s00355-010-0495-0. http://dx.doi.org/10.1007/s00355-010-0495-0

    Google Scholar 

  20. Lederer, P.J., Hurter, A.P., Jr.: Competition of firms: discriminatory pricing and location. Econometrica 54 (3), 623–640 (1986). doi:10.2307/1911311. http://dx.doi.org/10.2307/1911311

    Article  MathSciNet  MATH  Google Scholar 

  21. Mallozzi, L., Passarelli di Napoli, A.: Optimal transport and a bilevel location-allocation problem. J. Glob. Optim. 1–15 (2015) http://dx.doi.org/10.1007/s10898-015-0347-7

  22. Mavronicolas, M., Monien, B., Papadopoulou, V.G., Schoppmann, F.: Voronoi games on cycle graphs. In: Mathematical Foundations of Computer Science, vol. 2008. Lecture Notes in Computer Science, vol. 5162, pp. 503–514. Springer, Berlin (2008). doi:10.1007/978-3-540-85238-4_41. http://dx.doi.org/10.1007/978-3-540-85238-4_41

  23. Myerson, R.B.: Population uncertainty and Poisson games. Int. J. Game Theory 27 (3), 375–392 (1998). doi:10.1007/s001820050079. http://dx.doi.org/10.1007/s001820050079

    Article  MathSciNet  MATH  Google Scholar 

  24. Myerson, R.B.: Large Poisson games. J. Econ. Theory 94 (1), 7–45 (2000). doi:10.1006/jeth.1998.2453. http://dx.doi.org/10.1006/jeth.1998.2453

    Article  MathSciNet  MATH  Google Scholar 

  25. Nuñez, M., Scarsini, M.: Competing over a finite number of locations. Econ. Theory Bull. 4 (2), 125–136 (2016) http://dx.doi.org/10.1007/s40505-015-0068-6

    Article  MathSciNet  Google Scholar 

  26. Osborne, M.J., Pitchik, C.: The nature of equilibrium in a location model. Int. Econ. Rev. 27 (1), 223–237 (1986). doi:10.2307/2526617. http://dx.doi.org/10.2307/2526617

    Article  MathSciNet  MATH  Google Scholar 

  27. Ottaviani, M., Sorensen, P.N.: The strategy of professional forecasting. J. Financ. Econ. 81 (2), 441–466 (2006). doi:10.1007/s00355-010-0495-0. http://dx.doi.org/10.1007/s00355-010-0495-0

    Article  Google Scholar 

  28. Pálv&lgyi, D.: Hotelling on graphs. Mimeo (2011)

    Google Scholar 

  29. Pinto, A.A., Almeida, J.P., Parreira, T.: Local market structure in a Hotelling town. J. Dyn. Games 3 (1), 75–100 (2016). doi:10.3934/jdg.2016004. http://dx.doi.org/10.3934/jdg.2016004

    Article  MathSciNet  MATH  Google Scholar 

  30. Plott, C.R.: A notion of equilibrium and its possibility under majority rule. Am. Econ. Rev. 57 (4), 787–806 (1967)

    Google Scholar 

  31. Suzuki, J.: Land use regulation as a barrier to entry: evidence from the Texas lodging industry. Int. Econ. Rev. 54 (2), 495–523 (2013). doi:10.1111/iere.12004. http://dx.doi.org/10.1007/s00355-010-0495-0

    Article  Google Scholar 

  32. Tabuchi, T.: Two-stage two-dimensional spatial competition between two firms. Reg. Sci. Urban. Econ. 24 (2), 207–227 (1994). doi:http://dx.doi.org/10.1016/0166-0462(93)02031-W. http://dx.doi.org/10.1016/0166-0462(93)02031-W

  33. Xefteris, D.: Multidimensional electoral competition between differentiated candidates. Mimeo, University of Cyprus (2015)

    Google Scholar 

Download references

Acknowledgements

The authors thank Dimitrios Xefteris for useful discussions and the PHC Galilée G15-30 “Location models and applications in economics and political science” for financial support.

Matías Núñez was supported by the center of excellence MME-DII (ANR-11-LBX-0023-01).

Marco Scarsini was partially supported by PRIN 20103S5RN3 and MOE2013-T2-1-158. This author is a member of GNAMPA-INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Núñez .

Editor information

Editors and Affiliations

Appendix: Proofs

Appendix: Proofs

1.1 Proofs of Sect. 3

The proof of Theorem 2 requires some preliminary results.

Lemma 1.

Consider a sequence of games \(\{\mathcal{G}_{n}\}_{n\in \mathbb{N}}\). There exists \(\bar{n}\) such that for all \(n \geq \bar{ n}\), if \(\boldsymbol{\gamma }^{(n)}\) is a symmetric equilibrium of \(\mathcal{G}_{n}\), then \(\boldsymbol{\gamma }^{(n)}\) is completely mixed, i.e.,

$$\displaystyle{ \gamma ^{(n)}(x_{ j}) > 0\quad \text{for all }x_{j} \in X_{K}. }$$

Proof.

Assume by contradiction that for every \(n \in \mathbb{N}\) there exists some x j  ∈ X K and a symmetric equilibrium \(\boldsymbol{\gamma }^{(n)}\) of \(\mathcal{G}_{n}\) such that γ (n)(x j ) = 0. Given that λ(S) < , we have that for all i ∈ N n ,

$$\displaystyle{ U_{i}(\boldsymbol{\gamma }^{(n)}) = \frac{\lambda (S)} {n}. }$$

If player i deviates and plays the pure action a i  = x j , then she obtains a payoff

$$\displaystyle{ U_{i}(a_{i},\boldsymbol{\gamma }_{-i}^{(n)}) \geq \lambda (v_{ K}(x_{j})) > \frac{\lambda (S)} {n}, }$$

where the strict inequality holds for n large enough. This contradicts the assumption that \(\boldsymbol{\gamma }^{(n)}\) is an equilibrium. □ 

Lemma 2.

Let (Y 1 ,…,Y k ) be a random vector distributed according to a multinomial distribution with parameters (n − 1;γ 1 (n) ,…,γ k (n) ), with δ < γ j (n) < 1 −δ, for some 0 < δ < 1 and for all j ∈ K. Then

$$\displaystyle{ \lim _{n\rightarrow \infty }\frac{\mathbb{E}\left [ \frac{1} {Y _{j} + 1}\sum _{J\subset K}\lambda (v_{J}(x_{j}))\mathbb{1}(Y _{h} = 0\text{ for }h\not\in J)\right ]} {\mathbb{E}\left [ \frac{1} {Y _{\ell} + 1}\sum _{J\subset K}\lambda (v_{J}(x_{\ell}))\mathbb{1}(Y _{h} = 0\text{ for }h\not\in J)\right ]} = 1,\quad \text{for all }j,\ell\in K }$$
(11)

iff

$$\displaystyle{ \lim _{n\rightarrow \infty }\gamma _{j}^{(n)} =\gamma (x_{ j}) = \frac{\lambda (v_{K}(x_{j}))} {\lambda (S)} \quad \text{for all }j \in K. }$$
(12)

Proof.

Given j ∈ K, consider all J ⊂ K such that j ∈ J and the family \(\mathcal{V}_{j}\) of all corresponding Voronoi tessellations V (X J ). Call \(\widetilde{V }_{j}\) the finest partition of S generated by \(\mathcal{V}_{j}\), that is, the set of all possible intersections of cells v J (x j ) ∈ V (X J ) for \(V (X_{J}) \in \mathcal{V}_{j}\). It is clear that \(v_{K}(x_{j}) \in \widetilde{ V }_{j}\).

For \(A \in \widetilde{ V }_{j}\), call \(\widetilde{V }_{j}(A)\) the class of all cells in \(\widetilde{V }_{j}\) whose intersection with A is nonempty.

Then

$$\displaystyle\begin{array}{rcl} & & \mathbb{E}\left [ \frac{1} {Y _{j} + 1}\sum _{J\subset K}\lambda (v_{J}(x_{j}))\mathbb{1}(Y _{h} = 0\text{ for }h\not\in J)\right ] {}\\ & & \quad = \mathbb{E}\left [\frac{\lambda (v_{K}(x_{j}))} {Y _{j} + 1} \right ] {}\\ & & \quad \quad + \mathbb{E}\left [ \frac{1} {Y _{j} + 1}\sum _{A\in \widetilde{V }_{j}}\lambda (A)\mathbb{1}\left (Y _{h} = 0\text{ if }v_{K}(x_{j}) \cap A\neq \varnothing \right )\right ] {}\\ & & \quad \leq \mathbb{E}\left [\frac{\lambda (v_{K}(x_{j}))} {Y _{j} + 1} \right ] {}\\ & & \quad \quad +\sum _{A\in \widetilde{V }_{j}}\lambda (A)\mathbb{P}\left (Y _{h} = 0\text{ if }v_{K}(x_{j}) \cap A\neq \varnothing \right ) {}\\ & & = \mathbb{E}\left [\frac{\lambda (v_{K}(x_{j}))} {Y _{j} + 1} \right ] + o(1/n)\quad \text{for }n \rightarrow \infty, {}\\ \end{array}$$

since \(\mathbb{P}(Y _{i} = 0) = (1 -\gamma _{i}^{(n)})^{n} = o(1/n)\) for n → . Therefore

$$\displaystyle\begin{array}{rcl} \lim _{n\rightarrow \infty }\frac{\mathbb{E}\left [ \frac{1} {Y _{j} + 1}\sum _{J\subset K}\lambda (v_{J}(x_{j}))\mathbb{1}(Y _{h} = 0\text{ for }h\not\in J)\right ]} {\mathbb{E}\left [ \frac{1} {Y _{\ell} + 1}\sum _{J\subset K}\lambda (v_{J}(x_{\ell}))\mathbb{1}(Y _{h} = 0\text{ for }h\not\in J)\right ]} & =& \lim _{n\rightarrow \infty }\frac{\mathbb{E}\left [\frac{\lambda (v_{K}(x_{j}))} {Y _{j} + 1} \right ]} {\mathbb{E}\left [\frac{\lambda (v_{K}(x_{\ell}))} {Y _{\ell} + 1} \right ]} \\ & =& \lim _{n\rightarrow \infty }\frac{\lambda (v_{K}(x_{j}))} {\lambda (v_{K}(x_{\ell}))} \frac{\gamma _{\ell}^{(n)}} {\gamma _{j}^{(n)}} \\ & =& \frac{\lambda (v_{K}(x_{j}))} {\lambda (v_{K}(x_{\ell}))} \frac{\gamma (x_{\ell})} {\gamma (x_{j})} {}\end{array}$$
(13)

Given that j = 1 k γ(x j ) = 1, (13) holds if and only if (12) does. □ 

Proof (Proof of Theorem 2).

The game \(\mathcal{G}_{n}\) is finite and symmetric, so it admits a symmetric mixed Nash equilibrium \(\boldsymbol{\gamma }^{(n)} = (\gamma ^{(n)},\ldots,\gamma ^{(n)})\). Then, given Lemma 1, for all j,  ∈ K,

$$\displaystyle{ U_{i}(x_{j},\boldsymbol{\gamma }_{-i}^{(n)}) = U_{ i}(x_{\ell},\boldsymbol{\gamma }_{-i}^{(n)}). }$$
(14)

Using (2) we obtain

$$\displaystyle\begin{array}{rcl} U_{i}(x_{j},\boldsymbol{\gamma }_{-i}^{(n)})& =& \sum _{ a_{1}\in X_{K}}\ldots \sum _{a_{n}\in X_{K}}u_{i}(a_{1},\ldots,a_{i-1},x_{j},a_{i+1},\ldots,a_{n}) {}\\ & & \qquad \gamma ^{(n)}(x_{ 1})^{n_{1}(\boldsymbol{a}_{-i})}\ldots \gamma ^{(n)}(x_{ j})^{n_{j}(\boldsymbol{a}_{-i})+1}\ldots \gamma ^{(n)}(x_{ k})^{n_{k}(\boldsymbol{a}_{-i})} {}\\ & =& \mathbb{E}\left [ \frac{1} {Y _{j} + 1}\sum _{J\subset K}\lambda (v_{J}(x_{j}))\mathbb{1}(Y _{h} = 0\text{ for }h\not\in J)\right ], {}\\ \end{array}$$

where (Y 1, , Y k ) has a multinomial distribution with parameters (n − 1; γ (n)(x 1), , γ (n)(x k )). Notice that \(\boldsymbol{a} \approx X_{J}\) is equivalent to Y h  = 0 for all h ∉ J.

Therefore (14) holds if and only if

$$\displaystyle\begin{array}{rcl} & & \mathbb{E}\left [ \frac{1} {Y _{j} + 1}\sum _{J\subset K}\lambda (v_{J}(x_{j}))\mathbb{1}(Y _{h} = 0\text{ for }h\not\in J)\right ] {}\\ & & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \mathbb{E}\left [ \frac{1} {Y _{\ell} + 1}\sum _{J\subset K}\lambda (v_{J}(x_{\ell}))\mathbb{1}(Y _{h} = 0\text{ for }h\not\in J)\right ], {}\\ \end{array}$$

which implies (11). Lemma 2 provides the result. □ 

1.2 Proofs of Sect. 4

The next two lemmata are similar to Lemmata 1 and 2, respectively.

Lemma 3.

Consider a sequence of games \(\{\mathcal{P}_{n}\}_{n\in \mathbb{N}}\) . There exists \(\bar{n}\) such that for all \(n \geq \bar{ n}\) , if \(\boldsymbol{\gamma }^{(n)}\) is a symmetric equilibrium of \(\mathcal{P}_{n}\) , then \(\boldsymbol{\gamma }^{(n)}\) is completely mixed, i.e.,

$$\displaystyle{ \gamma ^{(n)}(x_{ j}) > 0\quad \text{for all }x_{j} \in X_{K}. }$$

Proof.

Assume by contradiction that for every \(n \in \mathbb{N}\) there exists some x j  ∈ X K and a symmetric equilibrium \(\boldsymbol{\gamma }^{(n)}\) of \(\mathcal{P}_{n}\) such that γ (n)(x j ) = 0. Given that λ(S) < , we have that for each player i

$$\displaystyle{ U_{i}(\boldsymbol{\gamma }^{(n)}) = \mathbb{E}\left [\frac{\lambda (S)} {\varXi _{n}} \right ], }$$

where Ξ n has a Poisson distribution with parameter n. If player i deviates and plays the pure action a i  = x j , then she obtains a payoff

$$\displaystyle{ U_{i}(a_{i},\boldsymbol{\gamma }_{-i}^{(n)}) \geq \lambda (v_{ K}(x_{j})) > \mathbb{E}\left [\frac{\lambda (S)} {\varXi _{n}} \right ], }$$

where the strict inequality holds for n large enough. This contradicts the assumption that \(\boldsymbol{\gamma }^{(n)}\) is an equilibrium. □ 

Lemma 4.

Let (Ξ 1 ,…,Ξ k ) be a random vector of independent random variables where Ξ j has a Poisson distribution with parameter nγ j (n) , with δ < γ j (n) < 1 −δ, for some 0 < δ < 1 and for all j ∈ K. Then

$$\displaystyle{ \lim _{n\rightarrow \infty }\frac{\mathbb{E}\left [ \frac{1} {\varXi _{j} + 1}\sum _{J\subset K}\lambda (v_{J}(x_{j}))\mathbb{1}(\varXi _{h} = 0\text{ for }h\not\in J)\right ]} {\mathbb{E}\left [ \frac{1} {\varXi _{\ell} + 1}\sum _{J\subset K}\lambda (v_{J}(x_{\ell}))\mathbb{1}(\varXi _{h} = 0\text{ for }h\not\in J)\right ]} = 1,\quad \text{for all }j,\ell\in K }$$
(15)

iff

$$\displaystyle{ \lim _{n\rightarrow \infty }\gamma _{j}^{(n)} =\gamma (x_{ j}) = \frac{\lambda (v_{K}(x_{j}))} {\lambda (S)} \quad \text{for all }j \in K. }$$
(16)

Proof.

Given j ∈ K, consider all J ⊂ K such that j ∈ J and the family \(\mathcal{V}_{j}\) of all corresponding Voronoi tessellations V (X J ). Call \(\widetilde{V }_{j}\) the finest partition of S generated by \(\mathcal{V}_{j}\), that is, the set of all possible intersections of cells v J (x j ) ∈ V (X J ) for \(V (X_{J}) \in \mathcal{V}_{j}\). It is clear that \(v_{K}(x_{j}) \in \widetilde{ V }_{j}\).

For \(A \in \widetilde{ V }_{j}\), call \(\widetilde{V }_{j}(A)\) the class of all cells in \(\widetilde{V }_{j}\) whose intersection with A is nonempty.

Then

$$\displaystyle\begin{array}{rcl} & & \mathbb{E}\left [ \frac{1} {\varXi _{j} + 1}\sum _{J\subset K}\lambda (v_{J}(x_{j}))\mathbb{1}(\varXi _{h} = 0\text{ for }h\not\in J)\right ] {}\\ & & \quad = \mathbb{E}\left [\frac{\lambda (v_{K}(x_{j}))} {\varXi _{j} + 1} \right ] {}\\ & & \quad \quad + \mathbb{E}\left [ \frac{1} {\varXi _{j} + 1}\sum _{A\in \widetilde{V }_{j}}\lambda (A)\mathbb{1}\left (\varXi _{h} = 0\text{ if }v_{K}(x_{j}) \cap A\neq \varnothing \right )\right ] {}\\ & & \quad \leq \mathbb{E}\left [\frac{\lambda (v_{K}(x_{j}))} {\varXi _{j} + 1} \right ] {}\\ & & \quad \quad +\sum _{A\in \widetilde{V }_{j}}\lambda (A)\mathbb{P}\left (\varXi _{h} = 0\text{ if }v_{K}(x_{j}) \cap A\neq \varnothing \right ) {}\\ & & \quad = \mathbb{E}\left [\frac{\lambda (v_{K}(x_{j}))} {\varXi _{j} + 1} \right ] + o(1/n)\quad \text{for }n \rightarrow \infty, {}\\ \end{array}$$

since \(\mathbb{P}(\varXi _{i} = 0) =\mathop{ \mathrm{e}}\nolimits ^{-n} = o(1/n)\) for n → . Therefore

$$\displaystyle\begin{array}{rcl} \lim _{n\rightarrow \infty }\frac{\mathbb{E}\left [ \frac{1} {\varXi _{j} + 1}\sum _{J\subset K}\lambda (v_{J}(x_{j}))\mathbb{1}(\varXi _{h} = 0\text{ for }h\not\in J)\right ]} {\mathbb{E}\left [ \frac{1} {\varXi _{\ell} + 1}\sum _{J\subset K}\lambda (v_{J}(x_{\ell}))\mathbb{1}(\varXi _{h} = 0\text{ for }h\not\in J)\right ]} & =& \lim _{n\rightarrow \infty }\frac{\mathbb{E}\left [\frac{\lambda (v_{K}(x_{j}))} {\varXi _{j} + 1} \right ]} {\mathbb{E}\left [\frac{\lambda (v_{K}(x_{\ell}))} {\varXi _{\ell} + 1} \right ]} \\ & =& \lim _{n\rightarrow \infty }\frac{\lambda (v_{K}(x_{j}))} {\lambda (v_{K}(x_{\ell}))} \frac{\gamma _{\ell}^{(n)}} {\gamma _{j}^{(n)}} \\ & =& \frac{\lambda (v_{K}(x_{j}))} {\lambda (v_{K}(x_{\ell}))} \frac{\gamma (x_{\ell})} {\gamma (x_{j})} {}\end{array}$$
(17)

Given that j = 1 k γ(x j ) = 1, (17) holds if and only if (16) does. □ 

Proof (Proof of Theorem 3).

Since the number of types and actions is finite, [23, Theorem  3] implies that the Poisson game \(\mathcal{P}_{n}\) admits a symmetric equilibrium \(\boldsymbol{\gamma }^{(n)}\). Given Lemma 3, for all j,  ∈ K,

$$\displaystyle{ U_{i}(x_{j},\boldsymbol{\gamma }_{-i}^{(n)}) = U_{ i}(x_{\ell},\boldsymbol{\gamma }_{-i}^{(n)}). }$$
(18)

For j ∈ K call \(n_{j}(\boldsymbol{a},\xi )\) the number of players who choose x j under strategy \(\boldsymbol{a}\) when the total number of players in the game is ξ. Using (2) we obtain

$$\displaystyle\begin{array}{rcl} U_{i}(x_{j},\boldsymbol{\gamma }_{-i}^{(n)})& =& \sum _{\xi =1}^{\infty }\Bigg[\sum _{ a_{1}\in X_{K}}\ldots \sum _{a_{\xi }\in X_{K}}u_{i}(a_{1},\ldots,a_{i-1},x_{j},a_{i+1},\ldots,a_{\xi }) {}\\ & & \gamma ^{(n)}(x_{ 1})^{n_{1}(\boldsymbol{a}_{-i},\xi )}\ldots \gamma ^{(n)}(x_{ j})^{n_{j}(\boldsymbol{a}_{-i},\xi )+1}\ldots \gamma ^{(n)}(x_{ k})^{n_{k}(\boldsymbol{a}_{-i},\xi )}\Bigg] {}\\ & & \cdot \frac{\mathop{\mathrm{e}}\nolimits ^{-n}n^{\xi }} {\xi !} {}\\ & =& \mathbb{E}\left [ \frac{1} {\varXi _{j} + 1}\sum _{J\subset K}\lambda (v_{J}(x_{j}))\mathbb{1}(\varXi _{h} = 0\text{ for }h\not\in J)\right ], {}\\ \end{array}$$

where (Ξ 1, , Ξ k ) are independent random variables such that Ξ j has a Poisson distribution with parameter n γ (n)(x j ). Notice that \(\boldsymbol{a} \approx X_{J}\) is equivalent to Ξ h  = 0 for all h ∉ J.

Therefore (18) holds if and only if

$$\displaystyle\begin{array}{rcl} & & \mathbb{E}\left [ \frac{1} {\varXi _{j} + 1}\sum _{J\subset K}\lambda (v_{J}(x_{j}))\mathbb{1}(\varXi _{h} = 0\text{ for }h\not\in J)\right ] {}\\ & & \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \mathbb{E}\left [ \frac{1} {\varXi _{\ell} + 1}\sum _{J\subset K}\lambda (v_{J}(x_{\ell}))\mathbb{1}(\varXi _{h} = 0\text{ for }h\not\in J)\right ], {}\\ \end{array}$$

which implies (15). Lemma 4 provides the result. □ 

1.3 Proofs of Sect. 5

Lemma 5.

Consider a sequence of games \(\{\mathcal{D}_{n}\}_{n\in \mathbb{N}}\) . There exists \(\bar{n}^{A}\) such that for all \(n^{A} \geq \bar{ n}^{A}\) , if \((\boldsymbol{\gamma }^{A,n},\boldsymbol{\gamma }^{D,n})\) is an (A,D)-symmetric equilibrium of \(\mathcal{D}_{n}\) , then γ A,n is completely mixed, i.e.,

$$\displaystyle{ \gamma ^{A,n}(x_{ j}) > 0\quad \text{for all }x_{j} \in X_{K}. }$$

Proof.

Assume by contradiction that for every \(n \in \mathbb{N}\) there exists some x j  ∈ X K and an (A, D)-symmetric equilibrium \((\boldsymbol{\gamma }^{A,n},\boldsymbol{\gamma }^{D,n})\) of \(\mathcal{D}_{n}\), such that γ A, n(x j ) = 0. Given that λ(S) < , we have that for i ∈ N n A

$$\displaystyle{ U_{i}^{A}(\boldsymbol{\gamma }^{A,n},\boldsymbol{\gamma }^{D,n}) \leq \frac{\lambda (S)} {n^{A}}. }$$

If player i ∈ N n A deviates and plays the pure action a i  = x j , then she obtains a payoff

$$\displaystyle{ U_{i}^{A}(a_{ i},\boldsymbol{\gamma }_{-i}^{A,n},\boldsymbol{\gamma }^{D,n}) \geq \lambda (v_{ K}(x_{j})) \geq \frac{\lambda (S)} {n^{A}}, }$$

for n A large enough. Indeed, note that even if some D-players choose x j in γ D, n, the A player attracts all the consumers from x j . Therefore \((\boldsymbol{\gamma }^{A,n},\boldsymbol{\gamma }^{D,n})\) is not an equilibrium for n A large enough. □ 

Lemma 6.

Let (Y 1 ,…,Y k ) be a random vector distributed according to a multinomial distribution with parameters (n;γ 1 (n) ,…,γ k (n) ), with δ < γ j (n) < 1 −δ, for some 0 < δ < 1 and for all j ∈ K. Then

$$\displaystyle{ \lim _{n\rightarrow \infty }\mathbb{P}(Y _{j} = 0) = 0\quad \text{for all }j \in K. }$$

Proof.

The result is obvious, since

$$\displaystyle{ \qquad \qquad \qquad \qquad \mathbb{P}(Y _{j} = 0) = (1 -\gamma _{j}^{(n)})^{n} \leq (1-\delta )^{n} \rightarrow 0.\qquad \qquad \qquad \qquad }$$

 □ 

Proof (Proof of Theorem 4).

Whenever a location x j is occupied by an advantaged player, any disadvantaged player choosing x j gets a payoff equal to zero. Therefore (10) is an immediate consequence of Lemmata 5 and 6. Moreover, asymptotically, the actions of disadvantaged players do not affect the payoff of advantaged players. Therefore an application of Lemma 2 with n A replacing n provides (9). □ 

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Núñez, M., Scarsini, M. (2017). Large Spatial Competition. In: Mallozzi, L., D'Amato, E., Pardalos, P. (eds) Spatial Interaction Models . Springer Optimization and Its Applications, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-319-52654-6_10

Download citation

Publish with us

Policies and ethics