Skip to main content

Abstract

Precise time dissemination and synchronization have been some of the most important technological tasks for several centuries. It was realized that precise time-keeping devices having the same stable frequency and precisely synchronized can have important applications in navigation. Satellite-based global positioning and navigation systems such as the GPS use the same principle. However, even the most sophisticated satellite navigation equipment cannot operate in every environment. In response to this need, we present a computational and analytical study of a network based model of a high-precision, inexpensive, Coupled Oscillator System and Timing device. Preliminary results from computer simulations seem to indicate that timing errors decrease as 1 / N when N crystals are coupled as oppose to \(1{/}\sqrt{N}\) for an uncoupled assemble. This manuscript is aimed, however, at providing a complete classification of the various patterns of collective behavior that are created, mainly, through symmetry-breaking bifurcations. The results should provide guidelines for follow-up simulations, design and fabrication tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.W. Allan. The science of timekeeping. Technical Report 1289, Hewlett Packard, (1997)

    Google Scholar 

  2. E. Doedel, X. Wang, Auto94: Software for Continuation and Bifurcation Problems in Ordinary Differential Equations Applied Mathematics Report, California Institute of Technology (1994)

    Google Scholar 

  3. A.K. Poddar, U.L. Rohde, in Crystal Oscillators, Wiley Encyclopedia and Electronics Engineering (2012), pp. 1–38

    Google Scholar 

  4. J. Wang, R. Wu, J. Du, T. Ma, D. Huang, W. Yan. The nonlinear thickness-shear ovibrations of quartz crystal plates under a strong electric field, in IEEE International Ultrasonics Symposium Proceedings, vol. 10.1109 (IEEE, 2011), pp. 320–323.

    Google Scholar 

  5. M. Golubitsky, I.N. Stewart, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory Vol. II, vol. 69 (Springer, New York, 1988)

    Google Scholar 

  6. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems (Springer, New York, 1990)

    Book  MATH  Google Scholar 

  7. V. In, A. Palacios, A. Bulsara, P. Longhini, A. Kho, J. Neff, S. Baglio, B. Ando, Complex behavior in driven unidirectionally coupled overdamped duffing elements. Phys. Rev. E, 73(6):066121 (2006)

    Google Scholar 

  8. G. Sebald, H. Kuwano, D. Guyomar, B. Ducharne, Simulation of a duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20, 075022 (2011)

    Article  Google Scholar 

  9. E.V. Appleton, B. van der Pol, On a type of oscillation-hysteresis in a simple triode generator. Lond. Edinburgh Dublin Philos. Mag. J. Sci. Ser. 6(43), 177–193 (1922)

    Article  Google Scholar 

  10. B. Van der Pol, On “relaxation-oscillations”. Lond. Edinburgh Dublin Philos. Mag. J. Sci. Ser. 7(2), 978–992 (1926)

    Google Scholar 

  11. P. Holmes, D.R. Rand, Bifurcation of the forced van der pol oscillator. Quart. Appl. Math. 35, 495–509 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. B. van der Pol, Forced oscillations in a circuit with non-linear resistance (reception with reactive triode). Lond. Edinburgh Dublin Philos. Mag. J. Sci. Ser. 7(3), 65–80 (1927)

    Google Scholar 

  13. B. van der Pol, J. van der Mark, Frequency demultiplication. Nature 120, 363–364 (1927)

    Article  Google Scholar 

  14. V. Apostolyuk, F. Tay, Dynamics of micromechanical coriolis vibratory gyroscopes. Sensor Lett. 2, 252–259 (2004)

    Article  Google Scholar 

  15. N. Davies. Ring of vibratory gyroscopes with coupling along the drive and sense axes. Master’s thesis, San Diego State University (2011)

    Google Scholar 

  16. A. Shkel. Type i and type ii micromachined vibratory gyroscopes, in Proceedings of IEEE/ION PLANS (San Diego, CA, 2006), pp. 586–593

    Google Scholar 

  17. H. Vu, A. Palacios, V. In, P. Longhini, J. Neff, Two-time scale analysis of a ring of coupled vibratory gyroscopes. Phys. Rev. E. 81, 031108 (2010)

    Article  Google Scholar 

  18. H. Vu. Ring of Vibratory Gyroscopes with Coupling along the Drive Axis. Ph.D. thesis, San Diego State University (2011)

    Google Scholar 

  19. S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175–R195 (2006)

    Article  Google Scholar 

  20. B.P. Mann, N.D. Sims, Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319, 515–530 (2009)

    Article  Google Scholar 

  21. A. Matus-Vargas, H.G. Gonzalez-Hernandez, B. Chan, A. Palacios, P.-L. Buono, V. In, S. Naik, A. Phipps, P. Longhini, Dynamics, bifurcations and normal forms in arrays of magnetostrictive energy harvesters with all-to-all coupling. Int. J. Bifurc. Chaos 25(2), 1550026 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Krupa, Bifurcations of relative equilibria. SIAM J. Math. Anal. 21(6), 1453–1486 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Visarath In, Antonio Palacios, and Pietro-Luciano Buono are conducting (as part of on-going work) all the theoretical calculations on the generic nonlinear system, as well as on specific applications. Antonio Palacios was supported by ASEE ONR Summer Faculty.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro-Luciano Buono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Buono, PL. et al. (2017). Network of Coupled Oscillators for Precision Timing. In: In, V., Longhini, P., Palacios, A. (eds) Proceedings of the 4th International Conference on Applications in Nonlinear Dynamics (ICAND 2016). ICAND 2016. Lecture Notes in Networks and Systems, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-52621-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52621-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52620-1

  • Online ISBN: 978-3-319-52621-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics