Multistability is a common phenomenon in nonlinear dynamical systems. It can also arise in nanoscale systems. This review paper presents three such systems exhibiting multistability: an electrically driven nanowire, a semiconductor superlattice, and a coupled system of ferromagnet and topological insulator. Potential applications are discussed.


Chaotic Attractor Topological Insulator Boltzmann Transport Equation Random Initial Condition Anomalous Hall Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This Review is based on Refs. [9, 11, 15, 81]. I thank my former and current students Dr. Q.-F. Chen, Dr. L Huang, Dr. X. Ni, Dr. L. Ying, Mr. G.-L. Wang, and Mr. H.-Y. Xu who contributed to different aspects of the topics discussed here. The efforts were supported by ONR under Grant No. N00014-15-1-2405 and by AFOSR under Grant No. FA9550-15-1-0151.


  1. 1.
    C. Grebogi, S.W. McDonald, E. Ott, J.A. Yorke, Final state sensitivity: an obstruction to predictability. Phys. Lett. A 99, 415–418 (1983)MathSciNetCrossRefGoogle Scholar
  2. 2.
    S.W. McDonald, C. Grebogi, E. Ott, J.A. Yorke, Fractal basin boundaries. Physica D 17, 125–153 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Y.-C. Lai, C. Grebogi, Intermingled basins and two-state on-off intermittency. Phys. Rev. E 52, R3313–R3316 (1995)CrossRefGoogle Scholar
  4. 4.
    Y.-C. Lai, C. Grebogi, J.A. Yorke, S. Venkataramani, Riddling bifurcation in chaotic dynamical systems. Phys. Rev. Lett. 77, 55–58 (1996)CrossRefGoogle Scholar
  5. 5.
    Y.-C. Lai, C. Grebogi, Noise-induced riddling in chaotic dynamical systems. Phys. Rev. Lett. 77, 5047–5050 (1996)CrossRefGoogle Scholar
  6. 6.
    U. Feudel, C. Grebogi, Multistability and the control of complexity. Chaos 7, 597–604 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    U. Feudel, C. Grebogi, Why are chaotic attractors rare in multistable systems? Phys. Rev. Lett. 91, 134102 (2003)CrossRefGoogle Scholar
  8. 8.
    Y.-C. Lai, T. Tél, Transient Chaos-Complex Dynamics on Finite Time Scales (Springer, New York, 2011)zbMATHGoogle Scholar
  9. 9.
    X. Ni, L. Ying, Y.-C. Lai, Y. Do, C. Grebogi, Complex dynamics in nanosystems. Phys. Rev. E 87, 052911 (2013)CrossRefGoogle Scholar
  10. 10.
    A.N. Pisarchik, U. Feudel, Control of multistability. Phys. Rep. 540, 167–218 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    G.-L. Wang, H.-Y. Xu, Y.-C. Lai, Nonlinear dynamics induced anomalous hall effect in topological insulators. Sci. Rep. 6, 19803 (2016)CrossRefGoogle Scholar
  12. 12.
    F. Prengel, A. Wacker, E. Schöll, Simple model for multistability and domain formation in semiconductor superlattices. Phys. Rev. B 50, 1705–1712 (1994)CrossRefGoogle Scholar
  13. 13.
    N.G. Sun, G.P. Tsironis, Multistability of conductance in doped semiconductor superlattices. Phys. Rev. B 51, 11221–11224 (1995)CrossRefGoogle Scholar
  14. 14.
    A. Amann, A. Wacker, L.L. Bonilla, E. Schöll, Dynamic scenarios of multistable switching in semiconductor superlattices. Phys. Rev. E 63, 066207 (2001)CrossRefGoogle Scholar
  15. 15.
    Q. Chen, L. Huang, Y.-C. Lai, C. Grebogi, D. Dietz, Extensively chaotic motion in electrostatically driven nanowires and applications. Nano lett. 10, 406–413 (2010)CrossRefGoogle Scholar
  16. 16.
    Z. Kovács, K.G. Szabó, T. Tél, Controlling chaos on fractal basin boundaries, in Nonlinearity and Chaos in Engineering Dynamics, ed by J.M.T. Thompson, S.R. Bishop, (Wiley, Chichester (England), 1994) pp. 155–162Google Scholar
  17. 17.
    Y.-C. Lai, Driving trajectories to a desirable attractor by using small control. Phys. Lett. A 221, 375–383 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    A.N. Pisarchik, Controlling the multistability of nonlinear systems with coexisting attractors. Phys. Rev. E 64, 046203 (2001)CrossRefGoogle Scholar
  19. 19.
    M. Dequesnes, S.V. Rotkin, N.R. Aluru, Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology 13, 120–131 (2002)CrossRefGoogle Scholar
  20. 20.
    S.N. Cha et al., Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube. Appl. Phys. Lett. 86, 083105 (2005)CrossRefGoogle Scholar
  21. 21.
    J.B. Ma, L. Jiang, S.F. Asokanthan, Influence of surface effects on the pull-in instability of nems electrostatic switches. Nanotechnology 21, 505708 (2010)CrossRefGoogle Scholar
  22. 22.
    Y.T. Yang, C. Callegari, X.L. Feng, M.L. Roukes, Surface adsorbate fluctuations and noise in nanoelectromechanical systems. Nano Lett. 11, 1753–1759 (2011)CrossRefGoogle Scholar
  23. 23.
    W. Conley, A. Raman, C. Krousgrill, S. Mohammadi, Nonlinear and nonplanar dynamics of suspended nanotube and nanowire resonators. Nano Lett. 8, 1590–1595 (2008)CrossRefGoogle Scholar
  24. 24.
    J.R. Dormand, P.J. Prince, A family of embedded runge-kutta formula. J. Comput. Appl. Math. 6, 19–26 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    L. Esaki, R. Tsu, Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev. 14, 61–65 (1970)CrossRefGoogle Scholar
  26. 26.
    H.T. Grahn, Semiconductor Supperlattices, Growth and Electronic Properties (World Scientific, Singapore, 1995)CrossRefGoogle Scholar
  27. 27.
    Y. Zhang, J. Kastrup, R. Klann, K.H. Ploog, H.T. Grahn, Synchronization and chaos induced by resonant tunneling in gaas/alas superlattices. Phys. Rev. Lett. 77, 3001–3004 (1996)CrossRefGoogle Scholar
  28. 28.
    E. Schöll, Nonlinear Spatiotemporal Dynamics and Chaos in Semiconductors (Cambridge University Press, Cambridge, UK, 2001)CrossRefGoogle Scholar
  29. 29.
    A. Wacker, Semiconductor superlattices: a model system for nonlinear transport. Phys. Rep. 357, 1–111 (2002)CrossRefzbMATHGoogle Scholar
  30. 30.
    X.L. Lei, C.S. Ting, Theory of nonlinear electron transport for solids in a strong electric field. Phys. Rev. B 30, 4809–4812 (1984)CrossRefGoogle Scholar
  31. 31.
    X.L. Lei, C.S. Ting, Green’s-function approach to nonlinear electronic transport for an electron-impurity-phonon system in a strong electric field. Phys. Rev. B 32, 1112–1132 (1985)CrossRefGoogle Scholar
  32. 32.
    X.L. Lei, N.J.M. Horing, H.L. Cui, Theory of negative differential conductivity in a superlattice miniband. Phys. Rev. Lett. 66, 3277–3280 (1991)CrossRefGoogle Scholar
  33. 33.
    X.L. Lei, High-frequency differential mobility in vertical transport of a confined superlattice. J. Phys. Cond. Matt. 6, 10043 (1994).
  34. 34.
    X.L. Lei, Balance equations for electron transport in a general energy band. J. Phys. Cond. Matt. 6, 9189 (1994)CrossRefGoogle Scholar
  35. 35.
    A.A. Ignatov, E.P. Dodin, V.I. Shashkin, Transient response theory for semiconductor superlattices: connection with bloch oscillations. Mod. Phys. Lett. B 5, 1087 (1991)CrossRefGoogle Scholar
  36. 36.
    R.R. Gerhardts, Effect of elastic scattering on miniband transport in semiconductor superlattices. Phys. Rev. B 48, 9178–9181 (1993)CrossRefGoogle Scholar
  37. 37.
    M. Büttiker, H. Thomas, Current instability and domain propagation due to bragg scattering. Phys. Rev. Lett. 38, 78–80 (1977)CrossRefGoogle Scholar
  38. 38.
    M. Büttiker, H. Thomas, Hydrodynamic modes, soft modes and fluctuation spectra near the threshold of a current instability. Z. Phys. B 33, 275–287 (1979)MathSciNetCrossRefGoogle Scholar
  39. 39.
    M. Büttiker, H. Thomas, Bifurcation and stability of dynamical structures at a current instability. Z. Phys. B 34, 301–311 (1979)CrossRefGoogle Scholar
  40. 40.
    X.L. Lei, Balance equations for hot electron transport in an arbitrary energy band. Phys. Status Solidi B 170, 519–529 (1992)CrossRefGoogle Scholar
  41. 41.
    X.L. Lei, Investigation of the buttiker-thomas momentum balance equation from the heisenberg equation of motion for bloch electrons. J. Phys. Condens. Matt. 7, L429 (1995)CrossRefGoogle Scholar
  42. 42.
    K.N. Alekseev, E.H. Cannon, J.C. McKinney, F.V. Kusmartsev, D.K. Campbell, Spontaneous dc current generation in a resistively shunted semiconductor superlattice driven by a terahertz field. Phys. Rev. Lett. 80, 2669–2672 (1998)CrossRefGoogle Scholar
  43. 43.
    K.N. Alekseev, G.P. Berman, D.K. Campbell, E.H. Cannon, M.C. Cargo, Dissipative chaos in semiconductor superlattices. Phys. Rev. B 54, 10625–10636 (1996)CrossRefGoogle Scholar
  44. 44.
    O.M. Bulashenko, M.J. García, L.L. Bonilla, Chaotic dynamics of electric-field domains in periodically driven superlattices. Phys. Rev. B 53, 10008–10018 (1996)CrossRefGoogle Scholar
  45. 45.
    M. Patra, G. Schwarz, E. Schöll, Bifurcation analysis of stationary and oscillating domains in semiconductor superlattices with doping fluctuations. Phys. Rev. B 57, 1824–1833 (1998)CrossRefGoogle Scholar
  46. 46.
    K.J. Luo, H.T. Grahn, K.H. Ploog, L.L. Bonilla, Explosive bifurcation to chaos in weakly coupled semiconductor superlattices. Phys. Rev. Lett. 81, 1290–1293 (1998)CrossRefGoogle Scholar
  47. 47.
    K.N. Alekseev, E.H. Cannon, J.C. McKinney, F.V. Kusmartsev, D.K. Campbell, Symmetry-breaking and chaos in electron transport in semiconductor superlattices. Phys. D 113, 129–133 (1998)CrossRefzbMATHGoogle Scholar
  48. 48.
    J.C. Cao, X.L. Lei, Synchronization and chaos in miniband semiconductor superlattices. Phys. Rev. B 60, 1871–1878 (1999)CrossRefGoogle Scholar
  49. 49.
    J.C. Cao, H.C. Liu, X.L. Lei, Chaotic dynamics in quantum-dot miniband superlattices. Phys. Rev. B 61, 5546–5555 (2000)CrossRefGoogle Scholar
  50. 50.
    D. Sánchez, G. Platero, L.L. Bonilla, Quasiperiodic current and strange attractors in ac-driven superlattices. Phys. Rev. B 63, 201306 (2001)CrossRefGoogle Scholar
  51. 51.
    K.N. Alekseev, F.V. Kusmartsev, Pendulum limit, chaos and phase-locking in the dynamics of ac-driven semiconductor superlattices. Phys. Lett. A 305, 281–288 (2002)CrossRefzbMATHGoogle Scholar
  52. 52.
    K.N. Alekseev, G.P. Bermana, D.K. Campbell, Dynamical instabilities and deterministic chaos in ballistic electron motion in semiconductor superlattices. Phys. Lett. A 193, 54–60 (1994)CrossRefGoogle Scholar
  53. 53.
    A. Amann, J. Schlesner, A. Wacker, E. Schöll, Chaotic front dynamics in semiconductor superlattices. Phys. Rev. B 65, 193313 (2002)CrossRefGoogle Scholar
  54. 54.
    L.L. Bonilla, H.T. Grahn, Non-linear dynamics of semiconductor superlattices. Rep. Prog. Phys. 68, 577–683 (2005)CrossRefGoogle Scholar
  55. 55.
    J. Galán, L.L. Bonilla, M. Moscoso, Bifurcation behavior of a superlattice model. SIAM J. Appl. Math. 60, 2029–2057 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    M.T. Greenaway, A.G. Balanov, E. Schöll, T.M. Fromhold, Controlling and enhancing terahertz collective electron dynamics in superlattices by chaos-assisted miniband transport. Phys. Rev. B 80, 205318 (2009)CrossRefGoogle Scholar
  57. 57.
    S.P. Stapleton et al., Use of stochastic web patterns to control electron transport in semiconductor superlattices. Phys. D 199, 166–172 (2004)CrossRefzbMATHGoogle Scholar
  58. 58.
    C. Wang, J.-C. Cao, Current oscillation and chaotic dynamics in superlattices driven by crossed electric and magnetic fields. Chaos 15, 013111 (2005)CrossRefGoogle Scholar
  59. 59.
    A.G. Balanov, D. Fowler, A. Patanè, L. Eaves, T.M. Fromhold, Bifurcations and chaos in semiconductor superlattices with a tilted magnetic field. Phys. Rev. E 77, 026209 (2008)CrossRefGoogle Scholar
  60. 60.
    K.J. Luo, H.T. Grahn, S.W. Teitsworth, K.H. Ploog, Influence of higher harmonics on poincaré maps derived from current self-oscillations in a semiconductor superlattice. Phys. Rev. B 58, 12613–12616 (1998)CrossRefGoogle Scholar
  61. 61.
    Y.-H. Zhang, R. Klann, H.T. Grahn, K.H. Ploog, Transition between synchronization and chaos in doped gaas/alas superlattices. Superlatt. Microstruc. 21, 565–568 (1997)CrossRefGoogle Scholar
  62. 62.
    T.M. Fromhold et al., Chaotic electron diffusion through stochastic webs enhances current flow in superlattices. Nature (London) 428, 726–730 (2004)CrossRefGoogle Scholar
  63. 63.
    A.E. Hramov et al., Subterahertz chaos generation by coupling a superlattice to a linear resonator. Phys. Rev. Lett. 112, 116603 (2014)CrossRefGoogle Scholar
  64. 64.
    T. Hyart, A.V. Shorokhov, K.N. Alekseev, Theory of parametric amplification in superlattices. Phys. Rev. Lett. 98, 220404 (2007)CrossRefGoogle Scholar
  65. 65.
    T. Hyart, K.N. Alekseev, E.V. Thuneberg, Bloch gain in dc-ac-driven semiconductor superlattices in the absence of electric domains. Phys. Rev. B 77, 165330 (2008)CrossRefGoogle Scholar
  66. 66.
    T. Hyart, N.V. Alexeeva, J. Mattas, K.N. Alekseev, Terahertz bloch oscillator with a modulated bias. Phys. Rev. Lett. 102, 140405 (2009)CrossRefGoogle Scholar
  67. 67.
    T. Hyart, J. Mattas, K.N. Alekseev, Model of the influence of an external magnetic field on the gain of terahertz radiation from semiconductor superlattices. Phys. Rev. Lett. 103, 117401 (2009)CrossRefGoogle Scholar
  68. 68.
    T. Hyart, Tunable Superlattice Amplifiers Based on Dynamics of Miniband Electrons in Electric and Magnetic Fields (Ph.D. Dissertation) (University of Oulu, Finland, 2009)Google Scholar
  69. 69.
    P.H. Siegel, Terahertz technology. IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002)CrossRefGoogle Scholar
  70. 70.
    B. Ferguson, X.-C. Zhang, Materials for terahertz science and technology. Nature Mater. 1, 26–33 (2002)CrossRefGoogle Scholar
  71. 71.
    T.W. Crowe, W.L. Bishop, D.W. Porterfield, J.L. Hesler, R.M. Weikle, Opening the terahertz window with integrated diode circuits. IEEE J. Solid-State Cir. 40, 2104–2110 (2005)CrossRefGoogle Scholar
  72. 72.
    M. Tonouchi, Cutting-edge terahertz technology. Nat. Photonics 1, 97–105 (2009)CrossRefGoogle Scholar
  73. 73.
    L. Kocarev, Chaos-based cryptography: a brief overview. IEEE Cir. Sys. Magaz. 1, 6–21 (2001)CrossRefGoogle Scholar
  74. 74.
    T. Stojanovski, L. Kocarev, Chaos-based random number generators-part i: analysis [cryptography]. IEEE Trans. Cir. Sys. I. Funda. Theo. App. 48, 281–288 (2001)Google Scholar
  75. 75.
    T. Stojanovski, J. Pihl, L. Kocarev, Chaos-based random number generators. part ii: practical realization. IEEE Trans. Cir. Sys. I. Funda. Theo. App. 48, 382–385 (2001)Google Scholar
  76. 76.
    M. Drutarovský, P. Galajda, Chaos-based true random number generator embedded in a mixed-signal reconfigurable hardware. J. Elec. Eng. 57, 218–225 (2006)Google Scholar
  77. 77.
    T. Lin, L.O. Chua, A new class of pseudo-random number generator based on chaos in digital filters. Int. J. Cir. Theo. App. 21, 473–480 (2006)CrossRefzbMATHGoogle Scholar
  78. 78.
    A. Uchida1 et al., Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2, 728–732 (2008)Google Scholar
  79. 79.
    I. Reidler, Y. Aviad, M. Rosenbluh, I. Kanter, Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett. 103, 024102 (2009)CrossRefGoogle Scholar
  80. 80.
    J.-Z. Zhang et al., A robust random number generator based on differential comparison of chaotic laser signals. Opt. Expr. 20, 7496–7506 (2012)CrossRefGoogle Scholar
  81. 81.
    L. Ying, D.-H. Huang, Y.-C. Lai, Multistability, chaos, and random signal generation in semiconductor superlattices. Phys. Rev. E 93, 062204 (2016)CrossRefGoogle Scholar
  82. 82.
    D. Huang, P.M. Alsing, T. Apostolova, D.A. Cardimona, Coupled energy-drift and force-balance equations for high-field hot-carrier transport. Phys. Rev. B 71, 195205 (2005)CrossRefGoogle Scholar
  83. 83.
    D. Huang, P.M. Alsing, Many-body effects on optical carrier cooling in intrinsic semiconductors at low lattice temperatures. Phys. Rev. B 78, 035206 (2008)CrossRefGoogle Scholar
  84. 84.
    D. Huang, D.A. Cardimona, Nonadiabatic effects in a self-consistent hartree model for electrons under an ac electric field in multiple quantum wells. Phys. Rev. B 67, 245306 (2003)CrossRefGoogle Scholar
  85. 85.
    D. Huang, S.K. Lyo, G. Gumbs, Bloch oscillation, dynamical localization, and optical probing of electron gases in quantum-dot superlattices in high electric fields. Phys. Rev. B 79, 155308 (2009)CrossRefGoogle Scholar
  86. 86.
    C. Grebogi, E. Ott, J.A. Yorke, Crises, sudden changes in chaotic attractors and chaotic transients. Phys. D 7, 181–200 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  87. 87.
    J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Mag. Mag. Mate. 159, L1–L7 (1996)CrossRefGoogle Scholar
  88. 88.
    C. Chappert, A. Fert, F.N. Van Dau, The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007)CrossRefGoogle Scholar
  89. 89.
    L. Liu, T. Moriyama, D.C. Ralph, R.A. Buhrman, Spin-torque ferromagnetic resonance induced by the spin hall effect. Phys. Rev. Lett. 106, 036601 (2011)CrossRefGoogle Scholar
  90. 90.
    L. Liu, O.J. Lee, T.J. Gudmundsen, D.C. Ralph, R.A. Buhrman, Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin hall effect. Phys. Rev. Lett. 109, 096602 (2012)CrossRefGoogle Scholar
  91. 91.
    L. Liu et al., Spin-torque switching with the giant spin hall effect of tantalum. Science 336, 555–558 (2012)CrossRefGoogle Scholar
  92. 92.
    I.M. Miron et al., Current-driven spin torque induced by the rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010)Google Scholar
  93. 93.
    I.M. Miron et al., Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011)CrossRefGoogle Scholar
  94. 94.
    U.H. Pi et al., Tilting of the spin orientation induced by rashba effect in ferromagnetic metal layer. Appl. Phys. Lett. 97, 162507 (2010)CrossRefGoogle Scholar
  95. 95.
    X. Wang, A. Manchon, Diffusive spin dynamics in ferromagnetic thin films with a rashba interaction. Phys. Rev. Lett. 108, 117201 (2012)CrossRefGoogle Scholar
  96. 96.
    B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Quantum spin hall effect and topological phase transition in hgte quantum wells. Science 314, 1757–1761 (2006)CrossRefGoogle Scholar
  97. 97.
    M.Z. Hasan, C.L. Kane, Colloquium topol. insul. Rev. Mod. Phys. 82, 3045–3067 (2010)CrossRefGoogle Scholar
  98. 98.
    X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011)CrossRefGoogle Scholar
  99. 99.
    I. Garate, M. Franz, Inverse spin-galvanic effect in the interface between a topological insulator and a ferromagnet. Phys. Rev. Lett. 104, 146802 (2010)CrossRefGoogle Scholar
  100. 100.
    T. Yokoyama, Current-induced magnetization reversal on the surface of a topological insulator. Phys. Rev. B 84, 113407 (2011)CrossRefGoogle Scholar
  101. 101.
    T. Yokoyama, Y. Tanaka, N. Nagaosa, Anomalous magnetoresistance of a two-dimensional ferromagnet/ferromagnet junction on the surface of a topological insulator. Phys. Rev. B 81, 121401 (2010)CrossRefGoogle Scholar
  102. 102.
    Y.G. Semenov, X. Duan, K.W. Kim, Voltage-driven magnetic bifurcations in nanomagnet-topological insulator heterostructures. Phys. Rev. B 89, 201405 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Electrical Computer and Energy EngineeringArizona State UniversityTempeUSA

Personalised recommendations