A 4 MHz Chaotic Oscillator Based on a Jerk System

  • R. Chase HarrisonEmail author
  • Benjamin K. Rhea
  • Frank T. Werner
  • Robert N. Dean
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 6)


Chaotic oscillators have a wide range of possible applications including random number generation (RNG), a stimulation source for characterization of MEMS devices, spread spectrum communications, and audio range and RF noise sources. Some distinct characteristics of chaotic systems include topological mixing, determinism, long-term aperiodic behavior, sensitivity to initial conditions, as well as a spread spectrum response. In particular, the aperiodic behavior and sensitivity to initial conditions make chaotic oscillators an ideal candidate for RNG. In practice, one of the more important aspects of a RNG is the speed at which data/bits can be generated. In electronics, as the frequency of operation increases, so do the design restrictions and challenges. In addition, many of these chaotic systems are based on nonlinearities or complex math functions that are difficult to implement in electronic circuitry. Through careful selection of the system’s structure, complex behavior can be achieved in electronic circuitry with minimized component count, footprint and power consumption. Additionally, this concept reduces the design complexity compared to traditional techniques, and the jerk chaos architecture can aid in increasing the fundamental frequency by minimizing feedback paths in the chaotic oscillator. Presented in this work is a printed circuit board electronic implementation of a 4 MHz chaotic jerk system that exhibits complex, rich dynamics using very simple electronic circuits.


Chaotic System Random Number Generation Chaotic Oscillator Electronic Circuitry Gain Bandwidth Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Beal, J. Blakely, N. Corron, R. Dean: High frequency oscillators for chaotic radar. In: SPIE Defense+ Security. (International Society for Optics and Photonics 2016), pp. 98290H–98290HGoogle Scholar
  2. 2.
    A.N. Beal, R.N. Dean, A random stimulation source for evaluating mems devices using an exact solvable chaotic oscillator. Additional Papers and Presentations (DPC, 2015), pp. 001594–001625 (2015)Google Scholar
  3. 3.
    M. Blaszczyk, R.A. Guinee, A true random binary sequence generator based on chaotic circuit, in Signals and Systems Conference, 208, ISSC (IET Irish, 2008) pp. 294–299. doi: 10.1049/cp:20080678
  4. 4.
    S. Callegari, R. Rovatti, G. Setti, Spectral properties of chaos-based fm signals: theory and simulation results. IEEE Trans. Circ. Syst. I Fundam. Theor. Appl. 50(1), 3–15 (2003). doi: 10.1109/TCSI.2002.807510 MathSciNetCrossRefGoogle Scholar
  5. 5.
    N.J. Corron, M.T. Stahl, R.C. Harrison, J.N. Blakely, Acoustic detection and ranging using solvable chaos. Chaos Interdisc. J. Nonlinear Sci. 23(2), 023–119 (2013)Google Scholar
  6. 6.
    S. Ergn, Security analysis of a chaos-based random number generator for applications in cryptography, in 2015 15th International Symposium on Communications and Information Technologies (ISCIT) (2015), pp. 319–322. doi: 10.1109/ISCIT.2015.7458371
  7. 7.
    S. Ergün, On the security of a double-scroll based “true” random bit generator, in 2015 23rd European Signal Processing Conference (EUSIPCO) (IEEE, 2015), pp. 2058–2061Google Scholar
  8. 8.
    S. Ergun, S. Ozoguz, A chaos-modulated dual oscillator-based truly random number generator, in 2007 IEEE International Symposium on Circuits and Systems (2007), pp. 2482–2485. doi: 10.1109/ISCAS.2007.378742
  9. 9.
    R.A. Guinee, M. Blaszczyk, A novel true random binary sequence generator based on a chaotic double scroll oscillator combination with a pseudo random generator for cryptographic applications, in International Conference for Internet Technology and Secured Transactions, ICITST 2009 (2009), pp. 1–6. doi: 10.1109/ICITST.2009.5402536
  10. 10.
    S. Ozoguz, N.S. Sengor, On the realization of npn-only log-domain chaotic oscillators. IEEE Trans. Circ. Syst. I Fundam. Theor. Appl. 50(2), 291–294 (2003). doi: 10.1109/TCSI.2002.808230 CrossRefGoogle Scholar
  11. 11.
    F. Pareschi, G. Scotti, L. Giancane, R. Rovatti, G. Setti, A. Trifiletti, Power analysis of a chaos-based random number generator for cryptographic security, in 2009 IEEE International Symposium on Circuits and Systems (2009), pp. 2858–2861. doi: 10.1109/ISCAS.2009.5118398
  12. 12.
    A.G. Radwan, A.M. Soliman, A.L. El-Sedeek, Mos realization of the double-scroll-like chaotic equation. IEEE Trans. Circ. Syst. I Fundam. Theor. Appl. 50(2), 285–288 (2003). doi: 10.1109/TCSI.2002.808217 CrossRefzbMATHGoogle Scholar
  13. 13.
    T. Saito, H. Fujita, Chaos in a manifold piecewise linear system. Electron. Commun. Jpn. (Part I Commun.) 64(10), 9–17 (1981)Google Scholar
  14. 14.
    J. Sprott, Elegant Chaos: algebraically simple chaotic flows. World Scientific (2010).
  15. 15.
    J.C. Sprott, Simple chaotic systems and circuits. Am. J. Phys. 68(8), 758–763 (2000)CrossRefGoogle Scholar
  16. 16.
    T. Stojanovski, L. Kocarev, Chaos-based random number generators-part i: analysis [cryptography]. IEEE Trans. Circ. Syst. I Fundam. Theor. Appl. 48(3), 281–288 (2001). doi: 10.1109/81.915385 CrossRefzbMATHGoogle Scholar
  17. 17.
    T. Stojanovski, J. Pihl, L. Kocarev, Chaos-based random number generators. part ii: practical realization. IEEE Trans. Circ. Syst. I Fundam. Theor. Appl. 48(3), 382–385 (2001). doi: 10.1109/81.915396 CrossRefzbMATHGoogle Scholar
  18. 18.
    V. Venkatasubramanian, H. Leung, A robust chaos radar for collision detection and vehicular ranging in intelligent transportation systems, in The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE, 2004). Proceedings. pp. 548–552Google Scholar
  19. 19.
    A. Volkovskii, L.S. Tsimring, N. Rulkov, I. Langmore, Spread spectrum communication system with chaotic frequency modulation. Chaos Interdisc. J. Nonlinear Sci. 15(3), 033–101 (2005)Google Scholar
  20. 20.
    A. Wang, L. Wang, Y. Wang, Post-processing-free 400 gb/s true random number generation using optical heterodyne chaos, in 2016 25th Wireless and Optical Communication Conference (WOCC) (2016) pp. 1–4. doi: 10.1109/WOCC.2016.7506616
  21. 21.
    M.E. Yalcin, J.A.K. Suykens, J. Vandewalle, True random bit generation from a double-scroll attractor. IEEE Trans. Circ. Syst. I Regul. Pap. 51(7), 1395–1404 (2004). doi: 10.1109/TCSI.2004.830683 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • R. Chase Harrison
    • 1
    Email author
  • Benjamin K. Rhea
    • 1
  • Frank T. Werner
    • 1
  • Robert N. Dean
    • 1
  1. 1.Auburn UniversityAuburnUSA

Personalised recommendations