Transverse Modes of Coupled Nonlinear Oscillator Arrays

  • Niketh NairEmail author
  • Erik Bochove
  • Yehuda Braiman
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 6)


We derive and apply an extension of Master Stability Function (MSF) theory to learn how transverse modes arise in arrays of coupled nonlinear oscillators. The MSF theory shows how network topology affects the stability of perfect synchrony between the oscillators. In particular it shows how the dynamics of the single oscillator and the eigenvalue spectrum of the coupling matrix determine the degree of synchronization of a coupled nonlinear system. In our description, the synchronous state actually corresponds to the first transverse mode of the system. We show that the MSF theory can also describe whether a non-synchronous transverse mode is stable. We apply this analysis to arrays of semiconductor lasers in order to demonstrate how mode selection occurs.


Diffusive Coupling Semiconductor Laser Transverse Mode Couple Oscillator Coupling Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



N.N. would like to thank Alejandro Aceves of Southern Methodist University, Department of Mathematics for valuable discussions were important for the outcome of this work. This research was supported in part by the Office of Naval Research and the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract DE-AC05-00OR22725. Opinions, interpretations, and conclusions, and recommendations are those of the authors and are not necessarily endorsed by the U.S. government.


  1. 1.
    L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 80(10), 2109 (1998)CrossRefGoogle Scholar
  2. 2.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization (Cambridge University Press, 2003)Google Scholar
  3. 3.
    F. Sorrentino, New J. Phys. 14(3), 033035 (2012)CrossRefGoogle Scholar
  4. 4.
    L. Pecora, F. Sorrentino, A. Hagerstrom, T. Murphy, R. Roy, Nat. Commun. 5, 5079 (2014)CrossRefGoogle Scholar
  5. 5.
    T. Dahms, J. Lehnert, E. Schöll, Phys. Rev. E 86(1), 16202 (2012)CrossRefGoogle Scholar
  6. 6.
    C.R.S. Williams, T.E. Murphy, R. Roy, F. Sorrentino, T. Dahms, E. Schöll, Phys. Rev. Lett. 110(6), 064104 (2013)CrossRefGoogle Scholar
  7. 7.
    A. Singh, S. Jalan, J. Kurths, Phys. Rev. E 87, 030902 (2013) (Rapid Communications)Google Scholar
  8. 8.
    R. Suresh, V. Senthilkumar, M. Lakshmanan, J. Kurths, Phys. Rev. E 86(1), 016212 (2012)CrossRefGoogle Scholar
  9. 9.
    E. Kapon, J. Katz, A. Yariv, Opt. Lett. 9(4), 125 (1984)CrossRefGoogle Scholar
  10. 10.
    E. Bochove, N. Nair, A. Aceves, M. Zunoubi, Proc. SPIE 8885 (2013)Google Scholar
  11. 11.
    N. Nair, E. Bochove, A. Aceves, M. Zunoubi, Y. Braiman, Proc. SPIE 9343 (2015)Google Scholar
  12. 12.
    J.J. Hopfield, Proc. Natl. Acad. Sci. 79(8), 2554 (1982)MathSciNetCrossRefGoogle Scholar
  13. 13.
    F.C. Hoppensteadt, E.M. Izhikevich, Phys. Rev. E 62, 4010 (2000)CrossRefGoogle Scholar
  14. 14.
    N. Nair, E. Bochove, Y. Braiman, BSEC, in 2014 Annual Oak Ridge National Laboratory (2014), pp. 1–4Google Scholar
  15. 15.
    T. Heil, I. Fischer, W. Elsässer, J. Mulet, C.R. Mirasso, Phys. Rev. Lett. 86, 795 (2001)CrossRefGoogle Scholar
  16. 16.
    I. Fischer, Y. Liu, P. Davis, Phys. Rev. A 62, 011801 (2000)CrossRefGoogle Scholar
  17. 17.
    T. Deng, G.Q. Xia, Z.M. Wu, X.D. Lin, J.G. Wu, Opt. Express 19(9), 8762 (2011)CrossRefGoogle Scholar
  18. 18.
    M.C. Soriano, F. Ruiz-Oliveras, P. Colet, C.R. Mirasso, Phys. Rev. E 78, 046218 (2008)CrossRefGoogle Scholar
  19. 19.
    G. Kozyreff, A.G. Vladimirov, P. Mandel, Phys. Rev. Lett. 85(18), 3809 (2000)CrossRefGoogle Scholar
  20. 20.
    M. Nixon, E. Ronen, A.A. Friesem, N. Davidson, Phys. Rev. Lett. 110, 184102 (2013)CrossRefGoogle Scholar
  21. 21.
    H.G. Winful, Phys. Rev. A 46(9), 6093 (1992)CrossRefGoogle Scholar
  22. 22.
    M.C. Soriano, J. Garcia-Ojalvo, C.R. Mirasso, I. Fischer, Rev. Mod. Phys. 85(1), 421 (2013)CrossRefGoogle Scholar
  23. 23.
    K. Green, T. Wagenknecht, J. Comp Appl. Math. 196, 567 (2006)Google Scholar
  24. 24.
    R. Lang, K. Kobayashi, IEEE J. Quant. Electron. 16(3), 347 (1980)CrossRefGoogle Scholar
  25. 25.
    S. Acharyya, R.E. Amritkar, Phys. Rev. E 92(5), 052902 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    A.E. Siegman, Lasers (University Science Books, 1983)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of TennesseeKnoxvilleUSA
  2. 2.Oak Ridge National LaboratoryOak RidgeUSA
  3. 3.Air Force Research LaboratoryKirtland AFBUSA

Personalised recommendations