Advertisement

Robustness of Injection-Locked Oscillators to CMOS Process Tolerances

  • Najme EbrahimiEmail author
  • James Buckwalter
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 6)

Abstract

We present a model for injection-locked oscillator (ILO) phase shifter that includes high-frequency coupling through a Silicon substrate. In this model, we consider conductive and resistive features of the substrate and predict the locking range and phase shift in the presence of substrate coupling. The model is verified through agreement with Cadence simulations and measurements. The phase shifter measurements are verified in a 2 × 2 injection-locked oscillator array operating from 15.5 to 18.5 GHz implemented in 90-nm GlobalFoundries SiGe BiCMOS technology. A 71–86 GHz 2 × 2 phased array uses this injection-locked phase shifter where the high frequency parasitics play an important role in the circuit performance.

Keywords

Phase Noise Parasitic Capacitance Frequency Detuning Amplitude Error Substrate Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Fotsin, S. Bowong, J. Daafouz, Chaos. Solitons & Fractals 26, 215 (2005)CrossRefGoogle Scholar
  2. 2.
    S. Strogatz, Sync: The Emerging Science of Spontaneous Order (Hyperion Books, New York, 2003)Google Scholar
  3. 3.
    P. Colet, R. Roy, Digital communications with synchronized chaotic lasers. Opt. Lett. 19(24), 2056–2058 (1994)CrossRefGoogle Scholar
  4. 4.
    C.R. Mirasso, P. Colet, P. García-Fernández, Synchronization of chaotic semiconductor lasers: application to encoded communication. IEEE Photon. Technol. Lett. 8(2), 299–301 (1996)CrossRefGoogle Scholar
  5. 5.
    G.D. VanWiggeren, R. Roy, Communication with chaotic lasers. Science 279(5354), 1198–1200 (1998)CrossRefGoogle Scholar
  6. 6.
    J.F. Buckwalter et al., An integrated Sub-harmonic Coupled-Oscillator scheme for a 60-GHz Phased-Array transmitter. IEEE TMTT 54, 71–80 (2006)Google Scholar
  7. 7.
    P. Liao, R.A York, A new phase-shifterless beam-scanning technique using arrays of coupled oscillators. IEEE TMTT 41(10), 1810–1815, Oct 1993Google Scholar
  8. 8.
    N. Ebrahimi, M. Bagheri, P. Wu, J. Buckwalter, An E-band, Scalable 2 × 2 Phased-Array transceiver using high isolation injection locked oscillators in 90 nm SiGe BiCMOS. IEEE Radio Freq. Integr. Circuits Symp. RFIC, May 2016Google Scholar
  9. 9.
  10. 10.
    A. Mirzaei, M.E. Heidari, R. Bagheri, S. Chehrazi, A.A. Abidi, The Quadrature LC oscillator: a complete portrait based on injection locking. IEEE J. Solid-State Circuits 42(9), 1916–1932 (2007)CrossRefGoogle Scholar
  11. 11.
    B. Razavi, A study of injection locking and pulling in oscillators. IEEE J. Solid-State Circuits 39(9), 1415–1424 (2004)CrossRefGoogle Scholar
  12. 12.
    S. Fregonese, R. D’Esposito, M. De Matos, A. Köhler, C. Maneux, T. Zimmer, Substrate-coupling effect in BiCMOS technology for millimeter wave applications. 2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS), Grenoble, 2015, pp. 1–4Google Scholar
  13. 13.
    M. Pfost, H.M. Rein, Modeling and measurement of substrate coupling in Si-bipolar IC’s up to 40 GHz. IEEE J. Solid-State Circuits 33(4), 582–591 (1998)CrossRefGoogle Scholar
  14. 14.
    N. Ebrahimi, P.Y. Wu, M. Bagheri, J.F. Buckwalter, A 71-86-GHz phased array transceiver using wideband injection-locked oscillator phase shifters. IEEE Trans. Microwave Theory Tech. 65, 1–16 (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations