Asynchronous Bifurcation Processor: Fundamental Concepts and Application Examples

  • Hiroyuki TorikaiEmail author
  • Kentaro Takeda
  • Taiki Naka
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 6)


In this manuscript fundamental concepts and principles of an asynchronous bifurcation processor are explained. Then some of recently developed neural system models (i.e., a multi-compartment neuron model and a cochlear partition model) based on the concept of the asynchronous bifurcation processor are discussed.


Discrete State Internal Clock Asynchronous Transition Forward Propagation Dendrite Compartment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T. Matsubara, H. Torikai, Asynchronous cellular automaton based neuron: theoretical analysis and on-FPGA learning. IEEE Trans. NNLS 24(5), 736–748 (2013)Google Scholar
  2. 2.
    T. Matsubara, H. Torikai, T. Hishiki, A generalized rotate-and-fire digital spiking neuron model and its on-FPGA learning. IEEE Trans. CAS-II 58(10), 677–681 (2011)Google Scholar
  3. 3.
    T. Hishiki, H. Torikai, A novel rotate-and-fire digital spiking neuron and its neuron-like bifurcations and responses. IEEE Trans. NN 22(5), 752–767 (2011)CrossRefGoogle Scholar
  4. 4.
    S. Hashimoto, H. Torikai, A novel hybrid spiking neuron: bifurcations, responses, and on-chip learning. IEEE Trans. CAS-I 57(8), 2168–2181 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    K. Isobe, H. Torikai, A novel hardware-efficient asynchronous cellular automaton model of spike-timing dependent synaptic plasticity. IEEE Trans. CAS-IIGoogle Scholar
  6. 6.
    N. Shimada, H. Torikai, A novel asynchronous cellular automaton multi-compartment neuron model. IEEE Trans. CAS-II 62(8), 776–780 (2015)Google Scholar
  7. 7.
    N. Jodai, H. Torikai, A hardware-efficient multi-compartment soma-dendrite model based on asynchronous cellular automaton dynamics. Proc. IJCNN (2016)Google Scholar
  8. 8.
    T. Naka, H. Torikai, Multi-compartment neuron model based on asynchronous bifurcation processor. Proc. NOLTA (2016)Google Scholar
  9. 9.
    T. Matsubara, H. Torikai, An asynchronous recurrent network of cellular automaton-based neurons and its reproduction of spiking neural network activities. IEEE Trans. NNLSGoogle Scholar
  10. 10.
    H. Ishimoto, M. Izawa, H. Torikai, A novel cochlea partition model based on asynchronous bifurcation processor. IEICE NOLTA J. 6(2), 207–225 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Izawa, H. Torikai, Asynchronous cellular automaton model of spiral ganglion cell in the mammalian cochlea: theoretical analyses and fpga implementation. IEICE Trans. Fundam. E98-A(2), 684-699 (2015)Google Scholar
  12. 12.
    T. Noguchi, H. Torikai, Ghost stochastic resonance from asynchronous cellular automaton neuron model. IEEE Trans. CAS-II 60(2), 111–115 (2013)Google Scholar
  13. 13.
    M. Izawa, H. Torikai, A novel hardware-efficient cochlea model based on asynchronous cellular automaton. Proc. IJCNN, paper ID 15745, (2015)Google Scholar
  14. 14.
    K. Takeda, H. Torikai, Reproduction of nonlinear cochlea response by asynchronous bifurcation processor. Proc. NOLTA (2016)Google Scholar
  15. 15.
    W. Rall, Electrophysiology of a dendritic neuron model. Biophys. J. 2(2), 145–167 (1962)CrossRefGoogle Scholar
  16. 16.
    E. Hay, S. Hill, F. Schurmann, H. Markram, I. Segev, Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLOS Comput. Biol. 7(7), e1002107 (2011)CrossRefGoogle Scholar
  17. 17.
    E.M. Izhikevich, Dynamical Systems in Neuroscience (The MIT Press, 2010)Google Scholar
  18. 18.
    P.J. Sjostrom, E.A. Rancz, A. Roth, M. Hausser, Dendritic excitability and synaptic plasticity. Physiol. Rev. 88(2), 769–840 (2008)CrossRefGoogle Scholar
  19. 19.
    W.R. Chen, J. Midtgaard, G.M. Shepherd, Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science 278(5337), 463–467 (1997)CrossRefGoogle Scholar
  20. 20.
    A.J. Hudspeth, F. Jülicher, P. Martin, A critique of the critical cochlea: Hopf-a bifurcation-is better than none. J. Neurophysiol. 104, 1219–1229 (2010)CrossRefGoogle Scholar
  21. 21.
    V.M. Eguiluz, M. Ospeck, Y. Choe, A.J. Hudspeth, M.O. Magnasco, Essential nonlinearities in hearing. Phys. Rev. Lett. 84(22), 5232–5235 (2000)CrossRefGoogle Scholar
  22. 22.
    R. Stoop, W.-H. Steeb, J.C. Gallas, A. Kern, Auditory two-tone suppression from a subcritical Hopf cochlea. Phys. A 351, 175–183 (2005)CrossRefGoogle Scholar
  23. 23.
    H. Duifhuis, Hopf Bifurcations and Van der Pol Oscillator models of the mammalian cochlea, in Proceedings of American Institute of Physics Conference, vol. 1403 (2011), pp. 199–205Google Scholar
  24. 24.
    M.O. Magnasco, A wave traveling over a Hopf instability shapes the cochlear tuning curve. Phys. Rev. Lett. 90(5), 058101 (2003)CrossRefGoogle Scholar
  25. 25.
    M. Reit, W. Mathis, R. Stoop, Time-discrete nonlinear cochlea model implemented on DSP for auditory studies, in Proceedings of Nonlinear Dynamics of Electronic Systems (2012), pp. 1–4Google Scholar
  26. 26.
    A.C. Crawford, R. Fettipplace, The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. J. Physiol 306, 79–125 (1980)CrossRefGoogle Scholar
  27. 27.
    Y. Kuznetsov, Elements of Applied Bifurcation Theory (Springer, 2004)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Kyoto Sangyo UniversityKyotoJapan

Personalised recommendations