Advertisement

Dynamics of Biomimetic Electronic Artificial Neural Networks

  • Harold M. HastingsEmail author
  • Oscar I. Hernandez
  • Lucy Jiang
  • Boqiao Lai
  • Lindsey Tensen
  • June Yang
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 6)

Abstract

We explore the key aspects of the dynamics of small networks of biomimetic artificial electronic neurons, including the role of local dynamics, network topology and noise. Models include Keener’s and Maeda and Makino’s “minimal” model circuits for FitzHugh-Nagumo neurons as well as the Belousov-Zhabotinsky chemical reaction, the prototype chemical oscillatory system. A wide variety of complex synchronization and emergent behavior is seen. There are potential applications to computer science, biology, and biomedicine.

Keywords

Stochastic Resonance Star Topology Emergent Dynamic Bromous Acid Analog Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank John Murray and Mark Spano for helpful discussions on neural models, and Richard Field and Sabrina Sobel for helpful conversations on BZ dynamics.

References

  1. 1.
    E.M.E. Arumugam, M.L. Spano, A chimeric path to neuronal synchronization. Chaos 25, 013107 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. Belair, L. Glass, U. an der Heiden, J. Milton, Dynamical disease: identification, temporal aspects and treatment strategies of human illness. Chaos 5(1), 1–7 (1995)Google Scholar
  3. 3.
    B.P. Belousov, A periodic reaction and its mechanism. Compilation of Abstracts on Radiation Medicine 147(145), 1 (1959)Google Scholar
  4. 4.
    A. Beuter, J. Bélair, C. Labrie, Feedback and delays in neurological diseases: a modeling study using dynamical systems. Bull. Math. Biol. 55, 525–541 (1993)zbMATHGoogle Scholar
  5. 5.
    S.L. Bressler, V. Menon, Large-scale brain networks in cognition: emerging methods and principles. Trends Cognitive Sci. 14(6), 277–290 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Bulsara, E.W. Jacobs, T. Zhou, F. Moss, L. Kiss, Stochastic resonance in a single neuron model: Theory and analog simulation. J. Theoret. Biol. 152, 531–555 (1991)CrossRefGoogle Scholar
  7. 7.
    L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  8. 8.
    L. Chua, Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)CrossRefzbMATHGoogle Scholar
  9. 9.
    M. Conrad, H.M. Hastings, Scale change and the emergence of information processing primitives. J. Theoret. Biol. 112(4), 741–755 (1985)MathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Douglas, M. Mahowald, C. Mead, Neuromorphic analogue VLSI. Ann. Rev. Neurosci. 18, 255–281 (1995)CrossRefGoogle Scholar
  11. 11.
    D.S. Echt, P.R. Liebson, L.B. Mitchell, R.W. Peters, D. Obias-Manno, A.H. Barker, D. Arensberg, A. Baker, L. Friedman, H.L. Greene, M.L. Huther, Mortality and morbidity in patients receiving encainide, flecainide, or placebo: the Cardiac Arrhythmia Suppression Trial. New Engl. J. Med. 324(12), 781–788 (1991)CrossRefGoogle Scholar
  12. 12.
    I.R. Epstein, J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics (Oxford University Press, New York, 1998)Google Scholar
  13. 13.
    G.B. Ermentrout, http://www.math.pitt.edu/~bard/classes/wppdoc/readme.htm. Accessed 24 Aug 2016
  14. 14.
    G.B. Ermentrout, D.H. Terman, Mathematical Foundations of Neuroscience (Springer Science and Business Media, New York, 2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    R.J. Field, Chaos in the Belousov-Zhabotinsky reaction. Mod. Phys. Lett. B 29, 1530015 (2015)CrossRefGoogle Scholar
  16. 16.
    R.J. Field, E. Körös, R.M. Noyes, Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system. J. Am. Chem. Soc. 94, 8649–8664 (1972)CrossRefGoogle Scholar
  17. 17.
    R.J. Field, R.M. Noyes, Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1974)CrossRefGoogle Scholar
  18. 18.
    R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)CrossRefGoogle Scholar
  19. 19.
    P. Foerster, S.C. Müller, B. Hess, Critical size and curvature of wave formation in an excitable chemical medium. Proc. National Acad. Sci. USA 86, 6831–6834 (1989)CrossRefGoogle Scholar
  20. 20.
    A. Garfinkel, P.S. Chen, D.O. Walter, H.S. Karagueuzian, B. Kogan, S.J. Evans, M. Karpoukhin, C. Hwang, T. Uchida, M. Gotoh, O. Nwasokwa, Quasiperiodicity and chaos in cardiac fibrillation. J. Clin. Invest. 99(2), 305–314 (1997)CrossRefGoogle Scholar
  21. 21.
    W. Gerstner, W.M. Kistler, R. Naud, L. Paninski, Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition (Cambridge University. Press., Cambridge UK 2014), http://neuronaldynamics.epfl.ch/online/index.html. Accessed 24 Aug 2016
  22. 22.
    L. Glass, M.C. Mackey, From Clocks to Chaos: The Rhythms of Life (Princeton University Press, Princeton NJ, 1988)zbMATHGoogle Scholar
  23. 23.
    B.J. Gluckman, T.I. Netoff, E.J. Neel, W.L. Ditto, M.L. Spano, S.J. Schiff, Stochastic resonance in a neuronal network from mammalian brain. Phys. Rev. Lett. 77, 4098–4101 (1996)CrossRefGoogle Scholar
  24. 24.
    H.M. Hastings, R.J. Field, S.G. Sobel, Microscopic fluctuations and pattern formation in a supercritical oscillatory chemical system. J. Chem. Phys. 119(6), 3291–3296 (2003)CrossRefGoogle Scholar
  25. 25.
    H.M. Hastings, S.G. Sobel, R.J. Field, D. Bongiovi, B. Burke, D. Richford, K. Finzel, M. Garuthara, Bromide control, bifurcation and activation in the Belousov-Zhabotinsky Reaction. J. Phys. Chem. A 112, 4715–4718 (2008)CrossRefGoogle Scholar
  26. 26.
    E.M. Izhikevitch, Dynamical systems in neuroscience: the geometry of excitability and bursting (MIT Press, Cambridge MA, 2007)Google Scholar
  27. 27.
    E.M. Izhikevich, R. FitzHugh, Fitzhugh-Nagumo model. Scholarpedia 1(9), 1349 (2006)CrossRefGoogle Scholar
  28. 28.
    A.L. Kawczyński, B. Nowakowski, Master equation simulations of a model of a thermochemical system. Phys. Rev. E 68, 036218 (2003)CrossRefGoogle Scholar
  29. 29.
    J.P. Keener, Analog circuitry for the van der Pol and FitzHugh-Nagumo equations.”. IEEE Trans. Systems Man Cybernetics 5, 1010–1014 (1983)CrossRefGoogle Scholar
  30. 30.
    W. Klimesch, An algorithm for the EEG frequency architecture of consciousness and brain body coupling. Frontiers Human Neurosci. 7 (2013). doi: 10.3389/fnhum.2013.00766
  31. 31.
    B. Land, X. Shen (2013), https://people.ece.cornell.edu/land/courses/ece1810/LTspice/. Accessed 24 Aug 2016
  32. 32.
    B. Land, X. Shen (2013), https://people.ece.cornell.edu/land/PROJECTS/NeuralModels/index.html. Accessed 24 Aug 2016
  33. 33.
    N. Li, J. Delgado, H.O. González-Ochoa, I.R. Epstein, S. Fraden, Combined excitatory and inhibitory coupling in a 1-D array of Belousov-Zhabotinsky droplets. Phys. Chem. Chem. Phys. 16, 10965–10978 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Maeda, H. Makino, A pulse-type hardware neuron model with beating, bursting excitation and plateau potential. BioSystems 58, 93–100 (2000)CrossRefGoogle Scholar
  35. 35.
    B. McNamara, K. Wiesenfeld, Theory of stochastic resonance. Phys. Rev. A 39, 4854 (1989)CrossRefGoogle Scholar
  36. 36.
    C. Mead, Neuromorphic electronic systems. Proc. IEEE 78(10), 1629–1636 (1990)CrossRefGoogle Scholar
  37. 37.
    C.A. Mead, M.A. Mahowald, A silicon model of early visual processing. Neural Netw. 1, 91–97 (1988)CrossRefGoogle Scholar
  38. 38.
    J. Murray, http://johndmurray.org/teaching/. Accessed 24 Aug 2016
  39. 39.
    J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)CrossRefGoogle Scholar
  40. 40.
    D.L. Packer, T.M. Munger, S.B. Johnson, K.T. Cragun, Mechanism of lethal proarrhythmia observed in the Cardiac Arrhythmia Suppression Trial: role of adrenergic modulation of drug binding. Pacing Clin. Electrophysiol. 20(2), 455–467 (1997)CrossRefGoogle Scholar
  41. 41.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: a Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge UK, 2001)CrossRefzbMATHGoogle Scholar
  42. 42.
    C.M. Pratt, L.A. Moyé, The Cardiac Arrhythmia Suppression Trial. Circulation 91, 245 (1995)CrossRefGoogle Scholar
  43. 43.
    D.M. Roden, Ionic mechanisms for prolongation of refractoriness and their proarrhythmic and antiarrhythmic correlates. Amer. J. Cardiology 78, 12–16 (1966)CrossRefGoogle Scholar
  44. 44.
    C. Rouvas-Nicolis, G. Nicolis, Stochast. Reson. Scholarpedia 2(11), 1474 (2007)CrossRefGoogle Scholar
  45. 45.
    S.K. Scott, Oscillations, Waves and Chaos in Chemical Kinetics (Oxford University Press, NY, 1995)Google Scholar
  46. 46.
    K. Showalter, Quadratic and cubic reaction–diffusion Fronts. Nonlinear Sci. Today 4(4), 1–10 (1995)zbMATHGoogle Scholar
  47. 47.
    S. Strogatz, Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life (Hyperion, New York, 2003)Google Scholar
  48. 48.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  49. 49.
    M. Toiya, V.K. Vanag, I.R. Epstein, Diffusively coupled chemical oscillators in a microfluidic assembly. Angew. Chem. 120, 7867–7869 (2008)CrossRefGoogle Scholar
  50. 50.
    N. Tompkins, M.C. Cambria, A.L. Wang, M. Heymann, S. Fraden, Creation and perturbation of planar networks of chemical oscillators. Chaos 25, 064611 (2015)CrossRefGoogle Scholar
  51. 51.
    T. Tuma, A. Pantazi, M. Le Gallo, A. Sebastian, E. Eleftheriou, Stochastic phase-change neurons. Nature Nanotechnol. (2016). doi: 10.1038/NNANO.2016.70 Google Scholar
  52. 52.
    J.J. Tyson, Scaling and reducing the Field-Koros-Noyes mechanism of the BelousovZhabotinskii reaction. J. Phys. Chem. 86, 3006–3012 (1982)CrossRefGoogle Scholar
  53. 53.
    V.K. Vanag, I.R. Epstein, Pattern formation in a tunable medium: The Belousov-Zhabotinsky reaction in an aerosol OT microemulsion. Phys. Rev. Lett. 87, 228301 (2001)CrossRefGoogle Scholar
  54. 54.
    K. Wiesenfeld, F. Moss, Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 (1995)Google Scholar
  55. 55.
    R.S. Williams, How we found the missing memristor. IEEE Spectr. 45, 28–35 (2008)CrossRefGoogle Scholar
  56. 56.
    A.T. Winfree, The Geometry of Biological Time (Springer, New York, 2001)CrossRefzbMATHGoogle Scholar
  57. 57.
    A.M. Zhabotinsky, Periodical oxidation of malonic acid in solution (a study of the Belousov reaction kinetics). Biofizika 9, 306–311 (1964)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Harold M. Hastings
    • 1
    • 2
    Email author
  • Oscar I. Hernandez
    • 1
  • Lucy Jiang
    • 1
  • Boqiao Lai
    • 1
    • 4
  • Lindsey Tensen
    • 1
  • June Yang
    • 1
    • 3
  1. 1.Division of ScienceBard College at Simon’s RockGreat BarringtonUSA
  2. 2.Department of PhysicsHofstra UniversityHempstead, New YorkUSA
  3. 3.APAMColumbia UniversityNew YorkUSA
  4. 4.Computer ScienceColumbia UniversityNew YorkUSA

Personalised recommendations