Advertisement

Chaotic Oscillators for Wideband Radar Signal Processing

  • Chandra S. PappuEmail author
  • Benjamin C. Flores
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 6)

Abstract

Previously, authors investigated a technique to generate the nonlinear chaos based FM (CBFM) waveforms to achieve wide bandwidth and frequency agility. The technique relied on the output of the Lorenz chaotic circuit. In this paper, authors present the potentials of Rossler based chaotic FM waveforms for wideband radar imaging and assess its statistical properties such as ergodicity, stationarity and invariant probability density functions. The correlation properties and ambiguity functions are illustrated to assess its resolution and electronic counter-counter measure capabilities (ECCM). Using the theoretical and experimental studies, a comparison will be performed between the CBFM waveforms generated using the Lorenz chaotic oscillator and the Rossler chaotic oscillator. Finally, a generalized approach on the utilization of chaotic systems for high range resolution and bistatic radar applications will be presented.

Keywords

Instantaneous Frequency Phase Lock Loop Voltage Control Oscillator Ambiguity Function Bistatic Radar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Skolnik, Radar Handbook, 2nd edn. (McGraw-Hill Publishing, New York, 1990)Google Scholar
  2. 2.
    M. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill Publishing, New York, 2014)Google Scholar
  3. 3.
    A. Self, ELINT: Interception and Analysis of Radar Signals (Artech House Radar Library, Massachusetts, 2006)Google Scholar
  4. 4.
    A. Denk, Detection and jamming low probability of intercept. Thesis (Naval Postgraduate School, 2006)Google Scholar
  5. 5.
    K.L. Fuller, To see and not to be seen (radar). Proc. IEEE Radar Signal Process. 137(1), 1–10 (1990)CrossRefGoogle Scholar
  6. 6.
    B.C. Flores, E.A. Solis, G. Thomas, Assessment of chaos-based FM signals for range-Doppler imaging. Proc. IEE Radar Sonar Navig. 150(4), 313–322 (2003)CrossRefGoogle Scholar
  7. 7.
    V. Venkatasubramanian, H. Leung, Chaos UWB radar for through-the-wall imaging. IEEE Trans. Image Process. 18(6), 1255–1265 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    G.K. Rohde, J.M. Nichols, F. Bucholtz, Chaotic signal detection and estimation based on attractor sets: applications to secure communications. CHAOS: Interdiscip. J. Nonlinear Sci. 18(1), 013114-1–013114-11 (2008)Google Scholar
  9. 9.
    D.S. Garmatyuk, R.M. Narayanan, ECCM capabilities of an ultrawideband bandlimited random noise imaging radar. IEEE Trans. Aerosp. Electron. Syst. 38(4), 1243–1255 (2002)CrossRefGoogle Scholar
  10. 10.
    E.W. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20(1), 130–141 (1963)CrossRefGoogle Scholar
  11. 11.
    O.E. Rossler, An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)CrossRefGoogle Scholar
  12. 12.
    B.C. Flores, C.S. Pappu, B. Verdin, Generation of FM signals with quasi-chirp behavior using three dimensional chaotic systems. Proc. SPIE 8021, 80210V1-10 (2011)Google Scholar
  13. 13.
    A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill for Electrical Engineers, New York, 1984)Google Scholar
  14. 14.
    N.M. Blachman, G.A. McAlpine, The spectrum of a high-index FM waveform: Woodward’s theorem revisited. IEEE Trans. Commun. Technol. 17(2), 201–208 (1969)CrossRefGoogle Scholar
  15. 15.
    M.S. Willsey, K.V. Cuomo, A.V. Oppenheim, Quasi-orthogonal wideband radar waveforms based on chaotic systems. IEEE Trans. Aerosp. Electron. Syst. 47(3), 1974–1984 (2010)CrossRefGoogle Scholar
  16. 16.
    D.C. Schleher, LPI radar: fact or fiction. IEEE Trans. Aerosp. Electron. Syst. Mag. 21(5), 3–6 (2006)Google Scholar
  17. 17.
    G.J. Upperman, T.L. Upperman, D.J. Fouts, P.E. Pace, Efficient time-frequency and bi-frequency signal processing on a reconfigurable computer, in Proceedings of IEEE Conference on Signals, Systems and Computers (2008)Google Scholar
  18. 18.
    D.L. Stevens, S.A. Shuckers, Analysis of low probability of intercept signals using the reassignment method. Am. J. Eng. Appl. Sci. 8(1), 26–47 (2015)CrossRefGoogle Scholar
  19. 19.
    G. Lellouch, P. Tran, R. Pribic, P. Van Genderen, OFDM Waveforms for frequency agility and opportunities for Doppler processing in radar, in Proceedings of IEEE Radar Conference (2008)Google Scholar
  20. 20.
    T. Tsao, M. Slamani, P. Varshney, D. Weiner, H. Schwarzlander, S. Borek, Ambiguity function for a bistatic radar. IEEE Trans. Aerosp. Electron. Syst. 33(3), 1041–1051 (1997)CrossRefGoogle Scholar
  21. 21.
    S.B. Rasool, M.R. Bell, Novel waveform and processing techniques for monostatic and bistatic radar, in Proceedings of IEEE Conference on Signals, Systems and Computers (2008)Google Scholar
  22. 22.
    N.J. Willis, Bistatic Radars, 1st edn. (Artech House Inc., Massachusetts, 1991)Google Scholar
  23. 23.
    M. Weib, Synchronization of bistatic radar systems. Proc. IEEE IGARSS 3(1), 1750–1753 (2004)Google Scholar
  24. 24.
    L. Zhang, T. Su, L. Zheng, X. He, High resolution ISAR imaging in receiver centered region area in bistatic radar. EURASIP J. Adv. Signal Process. 1–10 (2010)Google Scholar
  25. 25.
    P.E. Howland, D. Maksimiuk, G. Reitsma, FM radio bistatic radar. Proc. IEE Radar Sonar Navig. 152(3), 107–115 (2005)CrossRefGoogle Scholar
  26. 26.
    L. Yue, K.D. Yun, W. Rowert, L. Otmar, Bistatic FMCW SAR signal model and imaging approach. IEEE Trans. Aerosp. Electron. Syst. 49(3), 2017–2028 (2013)CrossRefGoogle Scholar
  27. 27.
    P.L. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. 64(8), 812–825 (1990)MathSciNetzbMATHGoogle Scholar
  28. 28.
    A.R. Volkovskii, L.S. Tsimring, N.F. Rulkov, I. Langmore, Spread spectrum communication system with chaotic frequency modulation. CHAOS: Interdiscip. J. Nonlinear Sci. 15(1), 03301-01–03301-6 (2005)Google Scholar
  29. 29.
    J. Guemez, M.A. Mathias, Modified method of synchronizing and cascading chaotic systems. Phys. Rev. E 52(3), 2145–2148 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of ECEUnion CollegeSchenctadyUSA
  2. 2.Department of ECEUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations