Skip to main content

Chaotic Oscillators for Wideband Radar Signal Processing

  • Conference paper
  • First Online:
Proceedings of the 4th International Conference on Applications in Nonlinear Dynamics (ICAND 2016) (ICAND 2016)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 6))

Included in the following conference series:

Abstract

Previously, authors investigated a technique to generate the nonlinear chaos based FM (CBFM) waveforms to achieve wide bandwidth and frequency agility. The technique relied on the output of the Lorenz chaotic circuit. In this paper, authors present the potentials of Rossler based chaotic FM waveforms for wideband radar imaging and assess its statistical properties such as ergodicity, stationarity and invariant probability density functions. The correlation properties and ambiguity functions are illustrated to assess its resolution and electronic counter-counter measure capabilities (ECCM). Using the theoretical and experimental studies, a comparison will be performed between the CBFM waveforms generated using the Lorenz chaotic oscillator and the Rossler chaotic oscillator. Finally, a generalized approach on the utilization of chaotic systems for high range resolution and bistatic radar applications will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Skolnik, Radar Handbook, 2nd edn. (McGraw-Hill Publishing, New York, 1990)

    Google Scholar 

  2. M. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill Publishing, New York, 2014)

    Google Scholar 

  3. A. Self, ELINT: Interception and Analysis of Radar Signals (Artech House Radar Library, Massachusetts, 2006)

    Google Scholar 

  4. A. Denk, Detection and jamming low probability of intercept. Thesis (Naval Postgraduate School, 2006)

    Google Scholar 

  5. K.L. Fuller, To see and not to be seen (radar). Proc. IEEE Radar Signal Process. 137(1), 1–10 (1990)

    Article  Google Scholar 

  6. B.C. Flores, E.A. Solis, G. Thomas, Assessment of chaos-based FM signals for range-Doppler imaging. Proc. IEE Radar Sonar Navig. 150(4), 313–322 (2003)

    Article  Google Scholar 

  7. V. Venkatasubramanian, H. Leung, Chaos UWB radar for through-the-wall imaging. IEEE Trans. Image Process. 18(6), 1255–1265 (2009)

    Article  MathSciNet  Google Scholar 

  8. G.K. Rohde, J.M. Nichols, F. Bucholtz, Chaotic signal detection and estimation based on attractor sets: applications to secure communications. CHAOS: Interdiscip. J. Nonlinear Sci. 18(1), 013114-1–013114-11 (2008)

    Google Scholar 

  9. D.S. Garmatyuk, R.M. Narayanan, ECCM capabilities of an ultrawideband bandlimited random noise imaging radar. IEEE Trans. Aerosp. Electron. Syst. 38(4), 1243–1255 (2002)

    Article  Google Scholar 

  10. E.W. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20(1), 130–141 (1963)

    Article  Google Scholar 

  11. O.E. Rossler, An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)

    Article  Google Scholar 

  12. B.C. Flores, C.S. Pappu, B. Verdin, Generation of FM signals with quasi-chirp behavior using three dimensional chaotic systems. Proc. SPIE 8021, 80210V1-10 (2011)

    Google Scholar 

  13. A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill for Electrical Engineers, New York, 1984)

    Google Scholar 

  14. N.M. Blachman, G.A. McAlpine, The spectrum of a high-index FM waveform: Woodward’s theorem revisited. IEEE Trans. Commun. Technol. 17(2), 201–208 (1969)

    Article  Google Scholar 

  15. M.S. Willsey, K.V. Cuomo, A.V. Oppenheim, Quasi-orthogonal wideband radar waveforms based on chaotic systems. IEEE Trans. Aerosp. Electron. Syst. 47(3), 1974–1984 (2010)

    Article  Google Scholar 

  16. D.C. Schleher, LPI radar: fact or fiction. IEEE Trans. Aerosp. Electron. Syst. Mag. 21(5), 3–6 (2006)

    Google Scholar 

  17. G.J. Upperman, T.L. Upperman, D.J. Fouts, P.E. Pace, Efficient time-frequency and bi-frequency signal processing on a reconfigurable computer, in Proceedings of IEEE Conference on Signals, Systems and Computers (2008)

    Google Scholar 

  18. D.L. Stevens, S.A. Shuckers, Analysis of low probability of intercept signals using the reassignment method. Am. J. Eng. Appl. Sci. 8(1), 26–47 (2015)

    Article  Google Scholar 

  19. G. Lellouch, P. Tran, R. Pribic, P. Van Genderen, OFDM Waveforms for frequency agility and opportunities for Doppler processing in radar, in Proceedings of IEEE Radar Conference (2008)

    Google Scholar 

  20. T. Tsao, M. Slamani, P. Varshney, D. Weiner, H. Schwarzlander, S. Borek, Ambiguity function for a bistatic radar. IEEE Trans. Aerosp. Electron. Syst. 33(3), 1041–1051 (1997)

    Article  Google Scholar 

  21. S.B. Rasool, M.R. Bell, Novel waveform and processing techniques for monostatic and bistatic radar, in Proceedings of IEEE Conference on Signals, Systems and Computers (2008)

    Google Scholar 

  22. N.J. Willis, Bistatic Radars, 1st edn. (Artech House Inc., Massachusetts, 1991)

    Google Scholar 

  23. M. Weib, Synchronization of bistatic radar systems. Proc. IEEE IGARSS 3(1), 1750–1753 (2004)

    Google Scholar 

  24. L. Zhang, T. Su, L. Zheng, X. He, High resolution ISAR imaging in receiver centered region area in bistatic radar. EURASIP J. Adv. Signal Process. 1–10 (2010)

    Google Scholar 

  25. P.E. Howland, D. Maksimiuk, G. Reitsma, FM radio bistatic radar. Proc. IEE Radar Sonar Navig. 152(3), 107–115 (2005)

    Article  Google Scholar 

  26. L. Yue, K.D. Yun, W. Rowert, L. Otmar, Bistatic FMCW SAR signal model and imaging approach. IEEE Trans. Aerosp. Electron. Syst. 49(3), 2017–2028 (2013)

    Article  Google Scholar 

  27. P.L. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. 64(8), 812–825 (1990)

    MathSciNet  MATH  Google Scholar 

  28. A.R. Volkovskii, L.S. Tsimring, N.F. Rulkov, I. Langmore, Spread spectrum communication system with chaotic frequency modulation. CHAOS: Interdiscip. J. Nonlinear Sci. 15(1), 03301-01–03301-6 (2005)

    Google Scholar 

  29. J. Guemez, M.A. Mathias, Modified method of synchronizing and cascading chaotic systems. Phys. Rev. E 52(3), 2145–2148 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra S. Pappu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pappu, C.S., Flores, B.C. (2017). Chaotic Oscillators for Wideband Radar Signal Processing. In: In, V., Longhini, P., Palacios, A. (eds) Proceedings of the 4th International Conference on Applications in Nonlinear Dynamics (ICAND 2016). ICAND 2016. Lecture Notes in Networks and Systems, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-52621-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52621-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52620-1

  • Online ISBN: 978-3-319-52621-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics