Computing Below the Expected Energy Limits

  • Luca GammaitoniEmail author
  • Igor Neri
  • Miquel López-Suárez
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 6)


In 1961 Landauer published its most famous work where he established a relation between information and physical entropy. While it is clear nowadays that a net entropy reduction on a physical system implies the dissipation of a certain amount of energy, this statement extended to logic gates is still somehow controversial. In this paper we present an experimental demonstration of the lack of linkage between informational and physical entropy in irreversible computing logic gates.


Logic Gate Logic Circuit Minimum Energy Expenditure Input Combination Logic Switch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)Google Scholar
  2. 2.
    C.H. Bennett, Logical reversibility of computation (Maxwells Demon. Entropy, Information, Computing, 1973), pp. 197–204zbMATHGoogle Scholar
  3. 3.
    M. Lopez-Suarez, I. Neri, L. Gammaitoni, Sub kbt micro electromechanical irreversible logic gate. Nat. Commu. 7, 12068 (2016)Google Scholar
  4. 4.
    F. Douarche, S. Ciliberto, A. Petrosyan, I. Rabbiosi, An experimental test of the jarzynski equality in a mechanical experiment. EPL (Europhysics Letters) 70(5), 593 (2005)Google Scholar
  5. 5.
    U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75(12), 126001 (2012)Google Scholar
  6. 6.
    M. Lopez-Suarez, I. Neri, L. Gammaitoni. Operating micromechanical logic gates below k b t: Physical vs logical reversibility. In Energy Efficient Electronic Systems (E3S), 2015 Fourth Berkeley Symposium on, pages 1–2. IEEE, (2015)Google Scholar
  7. 7.
    A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of landauer/’s principle linking information and thermodynamics. Nat. 483(7388), 187–189 (2012)Google Scholar
  8. 8.
    Y. Jun, M. Gavrilov, J. Bechhoefer, High-precision test of landauers principle in a feedback trap. Phys. Rev. Lett. 113(19), 190601 (2014)Google Scholar
  9. 9.
    L. Martini, M. Pancaldi, M. Madami, P. Vavassori, G. Gubbiotti, S. Tacchi, F. Hartmann, M. Emmerling, S. Höfling, L. Worschech et al., Experimental and theoretical analysis of landauer erasure in nano-magnetic switches of different sizes. Nano Energy 19, 108–116 (2016)CrossRefGoogle Scholar
  10. 10.
    I. Neri, M. Lopez-Suarez, D. Chiuchiú, L. Gammaitoni, Reset and switch protocols at landauer limit in a graphene buckled ribbon. EPL (Europhysics Letters) 111(1), 10004 (2015)CrossRefGoogle Scholar
  11. 11.
    I. Neri and M. López-Suárez. Heat production and error probability relation in landauer reset at effective temperature. Scientific Reports, 6:34039, (Sep 2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Luca Gammaitoni
    • 1
    Email author
  • Igor Neri
    • 1
  • Miquel López-Suárez
    • 1
  1. 1.NiPS Laboratory, Dipartimento di Fisica e GeologiaUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations