Advertisement

An Open Platform for Studying and Testing Context-Aware Indoor Positioning Algorithms

  • Nearchos Paspallis
  • Marios Raspopoulos
Conference paper
Part of the Lecture Notes in Information Systems and Organisation book series (LNISO, volume 22)

Abstract

This paper presents an open platform for studying and analyzing indoor positioning algorithms. While other such platforms exist, our proposal features novelties related to the collection and use of additional context data. The platform is realized in the form of a mobile client, currently implemented on Android. It enables manual collection of radio-maps—i.e. fingerprints of Wi-Fi signals—while also allowing for amending the fingerprints with various context data which could help improve the accuracy of positioning algorithms. While this is a research-in-progress platform, an initial experiment was carried out and its results were used to justify its applicability and relevance.

Keywords

Indoor positioning Fingerprint Context-aware Android 

References

  1. 1.
    Macagnano, D., Destino, G., Abreu, G.: Indoor positioning: a key enabling technology for IoT applications. In: IEEE World Forum on Internet of Things (WF-IoT), Seoul (2014)Google Scholar
  2. 2.
    Jami, I., Ali, N.M.F.N.M., Ormondroyd, R.F.: Comparison of methods of locating and tracking cellular mobiles. In: IEE Colloquium on Novel Methods of Location and Tracking of Cellular Mobiles and Their System Applications (Ref. No. 1999/046), London (1999)Google Scholar
  3. 3.
    Rappaport, T.S., Reed, J.H., Woerner, B.D.: Position location using wireless communications on highways of the future. IEEE Commun. Mag. 34(10), 33–41 (1996)CrossRefGoogle Scholar
  4. 4.
    Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location and tracking system. In: 19th Annual Joint Conference of the IEEE Computer and Communications Societies, Tel Aviv (2000)Google Scholar
  5. 5.
    Honkavirta, V., Perala, T., Ali-Loytty, S., Piche, R.: A comparative survey of WLAN location fingerprinting methods. In: 6th Workshop on Positioning, Navigation and Communication (WPNC), Hannover (2009)Google Scholar
  6. 6.
    Raspopoulos, M., Denis, B., Laaraiedh, M., Dominguez, J., De Celis, L., Slock, D., Agapiou G., Stephan, J.S.S.: Location-dependent information extraction for positioning. In: International Conference on Localization and GNSS, Starnberg (2012)Google Scholar
  7. 7.
    Sangwoo, L., Bongkwan, C., Bonhyun, K., Sanghwan, R., Jaehoon, C., Sunwoo, K.: Kalman filter-based indoor position tracking with self-calibration for RSS variation mitigation. Int. J. Distrib. Sens. Netw. 11(8), 180 (2015)Google Scholar
  8. 8.
    Jurdak, R., Corke, P., Dharman D., Salagnac, G.: Adaptive GPS duty cycling and radio ranging for energy-efficient localization. In: The 8th ACM Conference on Embedded Networked Sensor Systems (SenSys 2010), Zurich, Switzerland (2010)Google Scholar
  9. 9.
    Harle, R.: A survey of indoor inertial positioning systems for pedestrians. IEEE Commun. Surv. Tutorials 15(3), 1281–1293 (2013)CrossRefGoogle Scholar
  10. 10.
    Raspopoulos, M., Laoudias, C., Kanaris, L., Kokkinis, A., Panayiotou C.G., Stavrou, S.: 3D Ray Tracing for device-independent fingerprint-based positioning in WLANs. In: 9th Workshop on Positioning Navigation and Communication (WPNC), Dresden (2012)Google Scholar
  11. 11.
    Raspopoulos, M., Laoudias, C., Kanaris, L., Kokkinis, A., Panayiotou C.G., Stavrou, S.: Cross device fingerprint-based positioning using 3D Ray Tracing. In: 8th International Wireless Communications and Mobile Computing Conference (IWCMC), Limassol (2012)Google Scholar
  12. 12.
    Su, D., Situ Z., Ho, I.W.-H.: Mitigating the antenna orientation effect on indoor Wi-Fi positioning of mobile phones. In: IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong (2015)Google Scholar
  13. 13.
    Mandal, A., Lopes, C.V., Givargis, T., Haghighat, A., Jurdak, R., Baldi, P.: Beep: 3D indoor positioning using audible sound. In: Second IEEE Consumer Communications and Networking Conference CCNC, Las Vegas (2005)Google Scholar
  14. 14.
    Madhavapeddy, A., Scott D., Sharp, R.: Context-aware computing with sound. In: 5th International Conference on Ubiquitous Computing, Seattle (2003)Google Scholar
  15. 15.
    Joe, C., Yip, L., Elson, J., Wang, H., Maniezzo, D., Hudson, R.E., Yao, K., Estrin, D.: Coherent acoustic array processing and localization on wireless sensor networks. Cent. Embed. Netw. Sens. 91(8), 1154–1162 (2003)Google Scholar
  16. 16.
    Liu, J., Chen, Y., Jaakkola, A., Hakala, T., Hyyppa, J., Chen, L., Chen, R., Tang, J., Hyyppa, H.: The uses of ambient light for ubiquitous positioning. In: IEEE/ION Position, Location and Navigation Symposium (PLANS2014), Monterey (2014)Google Scholar
  17. 17.
    Baniukevic, A., Jensen, C.S., Lu, H.: Hybrid indoor positioning with wi-fi and bluetooth: architecture and performance. In: IEEE 14th International Conference on Mobile Data Management (MDM), Washington, DC (2013)Google Scholar
  18. 18.
    Kokkinis, A., Raspopoulos, M., Kanaris, L., Liotta, A., Stavrou, S.: Map-aided fingerprint-based indoor positioning. In: IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), London (2013)Google Scholar
  19. 19.
    Laoudias, C., Constantinou, G., Constantinides, M., Zeinalipour-Yazti, N.S.D., Panayiotou, C.: The airplace indoor positioning platform for android smartphones. In: 2012 IEEE 13th International Conference on Mobile Data Management, Bengaluru, Karnataka (2012)Google Scholar
  20. 20.
    Demonstration Abstract: Crowdsourced Indoor Localization and Navigation with Anyplace International conference on Information processing in sensor networks. In: IPSN’14, IEEE Press, Berlin, Germany (2014)Google Scholar
  21. 21.
    [Online]. Available: https://anyplace.cs.ucy.ac.cy/
  22. 22.
    Hansen, R., Thomsen, B., Thomsen, L.L., Stubkjær, F.: SmartCampusAAU—an open platform enabling indoor positioning and navigation. In: 14th International Conference on Mobile Data Management, Milan (2013)Google Scholar
  23. 23.
    Mazumdar, P., Ribeiro V.J., Tewari, S.: Generating indoor maps by crowdsourcing positioning data from smartphones. In: International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan (2014)Google Scholar
  24. 24.
    Wu, C., Yang, Z., Liu, Y.: Smartphones based crowdsourcing for indoor localization. IEEE Trans. Mob. Comput. 14(2), 444–457 (2015)CrossRefGoogle Scholar
  25. 25.
    Laoudias, C., Zeinalipour-Yazti, D., Panayiotou, C.G.: Crowdsourced indoor localization for diverse devices through radiomap fusion. In: International Conference on Indoor Positioning and Indoor Navigation, Montbeliard-Belfort (2013)Google Scholar
  26. 26.
    Paspallis, N.: Context-aware indoor positioning system. [Online]. Available: https://github.com/nearchos/CAIPS. Accessed 03 Oct 2016
  27. 27.
    Varshavsky, A., Patel, S.: Location in ubiquitous computing. In: Krumm, J. (ed.) Ubiquitous Computing Fundamentals, pp. 285–320. Chapman and Hall/CRC, Boca Raton (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.University of Central LancashirePrestonUK

Personalised recommendations