Skip to main content

Entanglement in QFT

  • Chapter
  • First Online:
Holographic Entanglement Entropy

Part of the book series: Lecture Notes in Physics ((LNP,volume 931))

  • 2761 Accesses

Abstract

As presaged in Chap. 1, we will primarily be interested in understanding entanglement in holographic field theories. But before we get to this particular set of quantum systems, it is useful to build some intuition in a more familiar setting. In this and the next section, we will therefore focus our attention on getting some insight into the concept of entanglement and learn some of the techniques which are used to characterize it. The discussion here will also serve to build some technical machinery which will be useful in the holographic context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As we will be primarily interested in relativistic systems, we will use d to indicate the total spacetime dimension of the field theory. When necessary to explicitly distinguish the spatial dimension, we will resort to the notation d = d s + 1, with d s denoting the number of spatial dimensions.

  2. 2.

    The domains of dependence are causal sets which are determined simply where a given set of points can communicate to or be communicated from, etc. For instance, \(D[\mathcal{A}]\) is defined as the set of points in \(\mathcal{B}\) through which every inextensible causal curve intersects \(\mathcal{A}\). A technical complication to keep in mind is that we take \(\mathcal{A}\) to be an open subset of \(\Sigma \); consequently, \(D[\mathcal{A}]\) is an open subset of \(\mathcal{B}\). We refer the reader to [32] for a discussion of these concepts.

  3. 3.

    To belabor the obvious, \(\rho _{\mathcal{A}}\log \rho _{\mathcal{A}}\) is not a linear operator on the Hilbert space.

  4. 4.

    This is also known as the closed time-path formalism or the in-in formalism. A closely related discussion for open quantum systems appears in [36].

  5. 5.

    When it is necessary to distinguish this construction, we will refer to the Lorentzian geometry with an explicit subscript, viz., \(\mathcal{B}_{\text{Lor}}\).

  6. 6.

    There are some other pitfalls, which we will get to later. For instance, the replica symmetry may itself be broken dynamically.

  7. 7.

    Once again modulo the fact that we need to supply suitable caveats to discuss theories with gauge invariance in which spatial regions do not necessarily allow for such a factorization.

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2010)

    Book  MATH  Google Scholar 

  2. A. Renyi, On measures of entropy and information, in Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability vol. 1 (1961), pp. 547–561

    Google Scholar 

  3. X. Dong, The gravity dual of Renyi entropy. Nat. Commun. 7, 12472 (2016). arXiv:1601.06788 [hep-th]

    Google Scholar 

  4. P. Buividovich, M. Polikarpov, Entanglement entropy in gauge theories and the holographic principle for electric strings. Phys. Lett. B670, 141–145 (2008). arXiv:0806.3376 [hep-th]

    Google Scholar 

  5. W. Donnelly, Decomposition of entanglement entropy in lattice gauge theory. Phys. Rev. D85, 085004 (2012). arXiv:1109.0036 [hep-th]

    Google Scholar 

  6. H. Casini, M. Huerta, J.A. Rosabal, Remarks on entanglement entropy for gauge fields. Phys. Rev. D89, 085012 (2014). arXiv:1312.1183 [hep-th]

    Google Scholar 

  7. W. Donnelly, Entanglement entropy and nonabelian gauge symmetry. Classical Quantum Gravity 31 (21), 214003 (2014). arXiv:1406.7304 [hep-th]

    Google Scholar 

  8. R. Wald, General Relativity (University of Chicago Press, Chicago, 1984)

    Book  MATH  Google Scholar 

  9. M. Headrick, V.E. Hubeny, A. Lawrence, M. Rangamani, Causality & holographic entanglement entropy. J. High Energy Phys. 12, 162 (2014). arXiv:1408.6300 [hep-th]

    Google Scholar 

  10. J.S. Schwinger, Brownian motion of a quantum oscillator. J. Math. Phys. 2, 407–432 (1961).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. L. Keldysh, Diagram technique for nonequilibrium processes. Zh. Eksp. Teor. Fiz. 47 1515–1527 (1964)

    MathSciNet  Google Scholar 

  12. R. Feynman, F.L. Vernon Jr., The Theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 24, 118–173 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  13. K.-C. Chou, Z.-B. Su, B.-L. Hao, L. Yu, Equilibrium and nonequilibrium formalisms made unified. Phys. Rep. 118, 1 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  14. N.P. Landsman, C.G. van Weert, Real and imaginary time field theory at finite temperature and density. Phys. Rep. 145, 141 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  15. F.M. Haehl, R. Loganayagam, M. Rangamani, The fluid manifesto: emergent symmetries, hydrodynamics, and black holes. J. High Energy Phys. 01, 184 (2016). arXiv:1510.02494 [hep-th]

    Google Scholar 

  16. F.M. Haehl, R. Loganayagam, M. Rangamani, Schwinger-Keldysh formalism I: BRST symmetries and superspace (2016). arXiv:1610.01940 [hep-th]

    Google Scholar 

  17. L. Bombelli, R.K. Koul, J. Lee, R.D. Sorkin, A quantum source of entropy for black holes. Phys. Rev. D34, 373–383 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  18. M. Srednicki, Entropy and area. Phys. Rev. Lett. 71, 666–669 (1993). arXiv:hep-th/9303048 [hep-th]

    Google Scholar 

  19. H. Casini, M. Huerta, A Finite entanglement entropy and the c-theorem. Phys. Lett. B600, 142–150 (2004). arXiv:hep-th/0405111 [hep-th]

    Google Scholar 

  20. R.C. Myers, A. Sinha, Holographic c-theorems in arbitrary dimensions. J. High Energy Phys. 01, 125 (2011). arXiv:1011.5819 [hep-th]

    Google Scholar 

  21. D.L. Jafferis, I.R. Klebanov, S.S. Pufu, B.R. Safdi, Towards the F-theorem: N=2 field theories on the three-sphere. J. High Energy Phys. 06, 102 (2011). arXiv:1103.1181 [hep-th]

    Google Scholar 

  22. H. Liu, M. Mezei, A Refinement of entanglement entropy and the number of degrees of freedom. J. High Energy Phys. 04, 162 (2013). arXiv:1202.2070 [hep-th]

    Google Scholar 

  23. H. Casini, M. Huerta, On the RG running of the entanglement entropy of a circle. Phys. Rev. D85, 125016 (2012). arXiv:1202.5650 [hep-th]

    Google Scholar 

  24. M.B. Hastings, An area law for one-dimensional quantum systems. J. Stat. Mech. Theory Exp. 8, 08024 (2007). arXiv:0705.2024 [quant-ph]

    Google Scholar 

  25. B. Swingle, T. Senthil, Universal crossovers between entanglement entropy and thermal entropy. Phys. Rev. B87 (4), 045123 (2013). arXiv:1112.1069 [cond-mat.str-el]

    Google Scholar 

  26. H. Araki, E. Lieb, Entropy inequalities. Commun. Math. Phys. 18, 160–170 (1970).

    Article  ADS  MathSciNet  Google Scholar 

  27. E.H. Lieb, M.B. Ruskai, A fundamental property of quantum-mechanical entropy. Phys. Rev. Lett. 30, 434–436 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  28. E.H. Lieb, M.B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938–1941 (1973)

    Article  ADS  Google Scholar 

  29. E. Carlen, Trace inequalities and quantum entropy: an introductory course. Entropy Quantum 529, 73–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Wehrl, General properties of entropy. Rev. Mod. Phys. 50, 221–260 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. V. Vedral, The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197–234 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. D.D. Blanco, H. Casini, L.-Y. Hung, R.C. Myers, Relative entropy and holography. J. High Energy Phys. 08, 060 (2013). arXiv:1305.3182 [hep-th]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rangamani, M., Takayanagi, T. (2017). Entanglement in QFT. In: Holographic Entanglement Entropy. Lecture Notes in Physics, vol 931. Springer, Cham. https://doi.org/10.1007/978-3-319-52573-0_2

Download citation

Publish with us

Policies and ethics