Skip to main content

Entanglement and Renormalization

  • Chapter
  • First Online:
  • 2691 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 931))

Abstract

An important milestone in our understanding of QFTs was Wilson’s idea of the renormalization group [200, 201]. The idea that physics can be organized into energy scales and that the high-energy modes are irrelevant, and can be integrated out when describing low energy dynamics, is central to our understanding of effective field theories. While the microscopic dynamics are prescribed in terms of some fundamental degrees of freedom, if our interest is in computing observables that probe the quantum dynamics at macrophysical scales, we can coarse-grain the system and work with just the relevant modes at the scales of interest. Clearly, this procedure involves some loss of information owing to the coarse-graining—a natural question is how does one capture a useful measure of the number of degrees of freedom at each length scale?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H. Casini, M. Huerta, A Finite entanglement entropy and the c-theorem. Phys. Lett. B600, 142–150 (2004). arXiv:hep-th/0405111 [hep-th]

    Google Scholar 

  2. R.C. Myers, A. Sinha, Holographic c-theorems in arbitrary dimensions. J. High Energy Phys. 01, 125 (2011). arXiv:1011.5819 [hep-th]

    Google Scholar 

  3. D.L. Jafferis, I.R. Klebanov, S.S. Pufu, B.R. Safdi, Towards the F-theorem: N=2 field theories on the three-sphere. J. High Energy Phys. 06, 102 (2011). arXiv:1103.1181 [hep-th]

    Google Scholar 

  4. H. Liu, M. Mezei, A Refinement of entanglement entropy and the number of degrees of freedom. J. High Energy Phys. 04, 162 (2013). arXiv:1202.2070 [hep-th]

    Google Scholar 

  5. H. Casini, M. Huerta, On the RG running of the entanglement entropy of a circle. Phys. Rev. D85, 125016 (2012). arXiv:1202.5650 [hep-th]

    Google Scholar 

  6. K.G. Wilson, Renormalization group and critical phenomena. 1. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B4, 3174–3183 (1971)

    Google Scholar 

  7. K.G. Wilson, J.B. Kogut, The renormalization group and the epsilon expansion. Phys. Rep. 12, 75–200 (1974)

    Article  ADS  Google Scholar 

  8. V. Balasubramanian, M.B. McDermott, M. Van Raamsdonk, Momentum-space entanglement and renormalization in quantum field theory. Phys. Rev. D86, 045014 (2012). arXiv:1108.3568 [hep-th]

    Google Scholar 

  9. J. Polchinski, Scale and conformal invariance in quantum field theory. Nucl. Phys. B303, 226–236 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  10. M.A. Luty, J. Polchinski, R. Rattazzi, The a-theorem and the asymptotics of 4D quantum field theory. J. High Energy Phys. 01, 152 (2013). arXiv:1204.5221 [hep-th]

    Google Scholar 

  11. A. Dymarsky, Z. Komargodski, A. Schwimmer, S. Theisen, On scale and conformal invariance in four dimensions. J. High Energy Phys. 10, 171 (2015). arXiv:1309.2921 [hep-th]

    Google Scholar 

  12. M.J. Duff, Twenty years of the Weyl anomaly. Classical Quantum Gravity 11, 1387–1404 (1994). arXiv:hep-th/9308075 [hep-th]

    Google Scholar 

  13. S. Deser, A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions. Phys. Lett. B309, 279–284 (1993). arXiv:hep-th/9302047 [hep-th]

    Google Scholar 

  14. A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory. JETP Lett. 43, 730–732 (1986). [Pisma Zh. Eksp. Teor. Fiz.43,565(1986)]

    Google Scholar 

  15. J.L. Cardy, Is there a c theorem in four-dimensions? Phys. Lett. B215, 749–752 (1988)

    Article  ADS  Google Scholar 

  16. Z. Komargodski, A. Schwimmer, On renormalization group flows in four dimensions. J. High Energy Phys. 12, 099 (2011). arXiv:1107.3987 [hep-th]

    Google Scholar 

  17. R.C. Myers, A. Sinha, Seeing a c-theorem with holography. Phys. Rev. D82, 046006 (2010). arXiv:1006.1263 [hep-th]

    Google Scholar 

  18. S. Giombi, I.R. Klebanov, Interpolating between a and F. J. High Energy Phys. 03, 117 (2015). arXiv:1409.1937 [hep-th]

    Google Scholar 

  19. J. Bhattacharya, V.E. Hubeny, M. Rangamani, T. Takayanagi, Entanglement density and gravitational thermodynamics. Phys. Rev. D91 (10), 106009 (2015). arXiv:1412.5472 [hep-th]

    Google Scholar 

  20. H. Casini, M. Huerta, R.C. Myers, A. Yale, Mutual information and the F-theorem. J. High Energy Phys. 10, 003 (2015). arXiv:1506.06195 [hep-th]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rangamani, M., Takayanagi, T. (2017). Entanglement and Renormalization. In: Holographic Entanglement Entropy. Lecture Notes in Physics, vol 931. Springer, Cham. https://doi.org/10.1007/978-3-319-52573-0_10

Download citation

Publish with us

Policies and ethics