Advertisement

Distraction Osteogenesis: Biologic and Biomechanical Principles

  • Christopher M. Runyan
  • Roberto L. FloresEmail author
  • Joseph G. McCarthy
Chapter

Abstract

Distraction osteogenesis is a bone-regenerative process in which an osteotomy is followed by gradual distraction of the surrounding vascularized bone segments, with formation of new bone within the distraction gap. This process was first described by Alessandro Codivilla at the turn of the twentieth century [1, 2]. Codivilla demonstrated the ability to lengthen the chronically deformed femur or tibia 3–8 cm following an oblique osteotomy. He did this by applying a 25–30 kg distractive force across a full extremity plaster cast, which was serially and circumferentially cut near the level of deformity. Application of traction occurred only at the time of cast adjustment, causing a gap to form, which was then filled with additional plaster. This frequently resulted in pressure necrosis due to rubbing of the cast against the soft tissues of the leg.

Keywords

Fracture Healing Distraction Osteogenesis Endochondral Ossification Appendicular Skeleton Endochondral Bone Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Codivilla A. On the means of lengthening, in the lower limbs, the muscles and tissues which are shortened through deformity. Am J Orthop Surg. 1905;(4):353–69. http://jbjs.org/content/s2-2/4/353.abstract
  2. 2.
    Jordan CJ, Goldstein RY, Mclaurin TM, Grant A. The evolution of the Ilizarov technique: part 1: the history of limb lengthening. Bull NYU Hosp Jt Dis. 2013;71(1):89–95.Google Scholar
  3. 3.
    Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part II. Clin Othop Relat Res. 1989a;(239):263–85.Google Scholar
  4. 4.
    Ilizarov GA. The tension-stress effect on the genesis and growth of tisues. Part I. Clin Orthop Relat Res. 1989b;(239):263–85.Google Scholar
  5. 5.
    Snyder CC, Levine GA, Swanson HM, Browne EZ. Mandibular lengthening by gradual distraction. Plast Reconstr Surg. 1973;51(5):506–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Karp NS, McCarthy JG, Schreiber JS, Sissons HA, Thorne CHM. Membranous bone lengthening: a serial histological study. Ann Plast Surg. 1992;29(1):2–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Karp NS, Thorne CHM, McCarthy JG, Sissons HA. Bone lengthening in the craniofacial skeleton. Ann Plast Surg. 1990;24(3):231–7.PubMedCrossRefGoogle Scholar
  8. 8.
    McCarthy JG, Schreiber JS, Karp NS, Thorne CHM, Grayson BH. Lengthening the human mandible by gradual distraction. Plast Reconstr Surg. 1992;89(1):1–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Rachmiel A, Potparic Z, Jackson IT, Sugihara T, Clayman L, Topf JS, Forté RA. Midface advancement by gradual distraction. Br J Plast Surg. 1993;46(3):201–7. http://www.ncbi.nlm.nih.gov/pubmed/8490698 PubMedCrossRefGoogle Scholar
  10. 10.
    Staffenberg DA, Wood RJ, McCarthy JG, Grayson BH, Glasberg SB. Midface distraction advancement in the canine without osteotomies. Ann Plast Surg. 1995;34(5):512–7.Google Scholar
  11. 11.
    Glat PM, Staffenberg DA, Karp NS, Holliday RA, Steiner G, McCarthy JG. Multidimensional distraction osteogenesis: the canine zygoma. Plast Reconstr Surg. 1994;94(6):753–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Bouletreau PJ, Warren SM, Paccione MF, Spector JA, McCarthy JG, Longaker MT. Transport distraction osteogenesis: a new method to heal adult calvarial defects. Plast Reconstr Surg. 2002b;109(3):1074–84. http://www.ncbi.nlm.nih.gov/pubmed/11884839 PubMedCrossRefGoogle Scholar
  13. 13.
    Losken HW, Mooney MP, Zoldos J, Tschakaloff A, Burrows AM, Smith TD, et al. Internal calvarial bone distraction in rabbits with delayed-onset coronal suture synostosis. Plast Reconstr Surg. 1998;102(4):1109–19; discussion 1120–1. http://www.ncbi.nlm.nih.gov/pubmed/9734430
  14. 14.
    Guichet J-M, Deromedis B, Donnan LT, Peretti G, Lascombes P, Bado F. Gradual femoral lengthening with the Albizzia intramedullary nail. J Bone Joint Surg Am. 2003;85-A(5):838–48. http://www.ncbi.nlm.nih.gov/pubmed/12728034 PubMedCrossRefGoogle Scholar
  15. 15.
    Synder M, Niedzielski K, Borowski A. Complication, difficulties and problems in the application of distraction epiphysiolysis. Ortop Traumatol Rehabil. 2002;4(4):464–8. http://www.ncbi.nlm.nih.gov/pubmed/17679880 PubMedGoogle Scholar
  16. 16.
    Coeugniet E, Dhellemmes P, Vinchon M, Wolber A, Pellerin P. Midfacial distraction without osteotomy using a transfacial pin and external devices. J Craniofac Surg. 2012;23(1):184–9. doi: 10.1097/SCS.0b013e3182418f80.PubMedCrossRefGoogle Scholar
  17. 17.
    Tong H, Gao F, Yin J, Shi Z, Song T, Li H, et al. Three-dimensional quantitative evaluation of midfacial skeletal changes after trans-sutural distraction osteogenesis for midfacial hypoplasia in growing patients with cleft lip and palate. J Craniomaxillofac Surg. 2015a;43(9):1749–57. doi: 10.1016/j.jcms.2015.08.027.PubMedCrossRefGoogle Scholar
  18. 18.
    Tong H, Wang X, Song T, Gao F, Yin J, Li H, et al. Trans-sutural distraction osteogenesis for midfacial hypoplasia in growing patients with cleft lip and palate: clinical outcomes and analysis of skeletal changes. Plast Reconstr Surg. 2015b;136(1):144–55. doi: 10.1097/PRS.0000000000001375.PubMedCrossRefGoogle Scholar
  19. 19.
    Slack GC, Fan KL, Tabit C, Andrews B, Hindin DI, Kawamoto HK, Bradley JP. Necessity of latency period in craniofacial distraction: investigations with in vitro microdistractor and clinical outcomes. J Plast Reconstr Aesthet Surg. 2015;68(9):1206–14. doi: 10.1016/j.bjps.2015.04.012.PubMedCrossRefGoogle Scholar
  20. 20.
    Hollier LH, Higuera S, Stal S, Taylor TD. Distraction rate and latency: factors in the outcome of pediatric mandibular distraction. Plast Reconstr Surg. 2006;117(7):2333–6. doi: 10.1097/01.prs.0000219354.16549.c9.PubMedCrossRefGoogle Scholar
  21. 21.
    Glowacki J, Shusterman EM, Troulis M, Holmes R, Perrott D, Kaban LB. Distraction osteogenesis of the porcine mandible: histomorphometric evaluation of bone. Plast Reconstr Surg. 2004;113(2):566–73. doi: 10.1097/01.PRS.0000101061.99577.09.PubMedCrossRefGoogle Scholar
  22. 22.
    Tavakoli K, Yu Y, Shahidi S, Bonar F, Walsh WR, Poole MD. Expression of growth factors in the mandibular distraction zone: a sheep study. Br J Plast Surg. 1999;52(6):434–9. doi: 10.1054/bjps.1999.3157.PubMedCrossRefGoogle Scholar
  23. 23.
    McCarthy JG, Stelnicki EJ, Grayson BH. Distraction osteogenesis of the mandible: a ten-year experience. Semin Orthod. 1999;5(1):3–8.PubMedCrossRefGoogle Scholar
  24. 24.
    McCarthy JG, Stelnicki EJ, Mehrara BJ, Longaker MT. Distraction osteogenesis of the craniofacial skeleton. Plast Reconstr Surg. 2001;107(7):1812–27.PubMedCrossRefGoogle Scholar
  25. 25.
    Farhadieh RD, Gianoutsos MP, Dickinson R, Walsh WR. Effect of distraction rate on biomechanical, mineralization, and histologic properties of an ovine mandible model. Plast Reconstr Surg. 2000;105(3):889–95. doi: 10.1097/00006534-200003000-00010.PubMedCrossRefGoogle Scholar
  26. 26.
    Mofid MM, Manson PN, Robertson BC, Tufaro AP, Elias JJ, Vander Kolk CA. Craniofacial distraction osteogenesis: a review of 3278 cases. Plast Reconstr Surg. 2001;108(5):1103–14; discussion 1115–7. http://www.ncbi.nlm.nih.gov/pubmed/11604605
  27. 27.
    Schendel SA, Heegaard JH. A mathematical model for mandibular distraction osteogenesis. J Craniofac Surg. 1996;7(6):465–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Boccaccio A, Pappalettere C, Kelly DJ. The influence of expansion rates on mandibular distraction osteogenesis: a computational analysis. Ann Biomed Eng. 2007;35(11):1940–60. doi: 10.1007/s10439-007-9367-x.PubMedCrossRefGoogle Scholar
  29. 29.
    Djasim UM, Mathot BJ, Wolvius EB, van Neck JW, van der Wal KGH. Histomorphometric comparison between continuous and discontinuous distraction osteogenesis. J Craniomaxillofac Surg. 2009;37(7):398–404. doi: 10.1016/j.jcms.2009.03.006.PubMedCrossRefGoogle Scholar
  30. 30.
    Peacock ZS, Tricomi ÃBJ, Faquin WC, Magill JC, Murphy BA, Kaban LB, Troulis MJ. Bilateral continuous automated distraction osteogenesis: proof of principle. J Craniofac Surg. 2015;26(8):2320–4. doi: 10.1097/SCS.0000000000001996.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Luchs JS, Stelnicki EJ, Rowe NM, Naijher NS, Grayson BH, McCarthy JG. Molding of the regenerate in mandibular distraction: part 1: laboratory study. J Craniofac Surg. 2002;13(2):205–11. doi: 10.1097/00001665-200203000-00004.PubMedCrossRefGoogle Scholar
  32. 32.
    McCarthy JG, Hopper RA, Hollier LH, Peltomaki T, Katzen T, Grayson BH. Molding of the regenerate in mandibular distraction: clinical experience. Plast Reconstr Surg. 2003;112(5):1239–46. doi: 10.1097/01.PRS.0000080726.50460.3E.PubMedCrossRefGoogle Scholar
  33. 33.
    Pensler JM, Goldberg DP, Lindell B, Carroll NC. Skeletal distraction of the hypoplastic mandible. Ann Plast Surg. 1995;134(2):130–6.CrossRefGoogle Scholar
  34. 34.
    Aronson J. Experimental and clinical experience with distraction osteogenesis. Cleft Palate Craniofac J. 1994b;31(6):473–81. doi: 10.1597/1545-1569(1994)031<0473:EACEWD>2.3.CO;2.PubMedCrossRefGoogle Scholar
  35. 35.
    Hopper RA, Altug AT, Grayson BH, Barillas I, Sato Y, Cutting CB, McCarthy JG. Cephalometric analysis of the consolidation phase following bilateral pediatric mandibular distraction. Cleft Palate Craniofac J. 2003;40(3):233–40. doi: 10.1597/1545-1569(2003)040<0233:CAOTCP>2.0.CO;2.PubMedCrossRefGoogle Scholar
  36. 36.
    Polley JW, Figueroa AA. Rigid external distraction: its application in cleft maxillary deformities. Plast Reconstr Surg. 1998;102(5):1360–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Eames BF, De la Fuente L, Helms J a. Molecular ontogeny of the skeleton. Birth Defects Res C Embryo Today Rev. 2003;69(2):93–101. doi: 10.1002/bdrc.10016.CrossRefGoogle Scholar
  38. 38.
    Ferguson C, Alpern E, Miclau T, Helms JA. Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev. 1999;87(1–2):57–66. doi: 10.1016/S0925-4773(99)00142-2.PubMedCrossRefGoogle Scholar
  39. 39.
    Karaplis A. Embryonic Development of Bone and the Molecular Regulation of Intramembranous and Endochondral Bone Formation. In: Bilezikian J, Raisz L, Martin TJ, Editors. Principles of Bone Biology Vol. 1. 2008, ISBN: 9780123738844.Google Scholar
  40. 40.
    Percival CJ, Richtsmeier JT. Angiogenesis and intramembranous osteogenesis. Dev Dyn. 2013;242(8):909–22. doi: 10.1016/j.biotechadv.2011.08.021.Secreted.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ishii M, Sun J, Ting M-C, Maxson RE. The development of the calvarial bones and sutures and the pathophysiology of craniosynostosis. Curr Top Dev Biol. 2015;115:131–56. doi: 10.1016/bs.ctdb.2015.07.004.PubMedCrossRefGoogle Scholar
  42. 42.
    Eames BF, Helms JA. Conserved molecular program regulating cranial and appendicular skeletogenesis. Dev Dyn. 2004;231(1):4–13. doi: 10.1002/dvdy.20134.PubMedCrossRefGoogle Scholar
  43. 43.
    Abzhanov A, Rodda SJ, McMahon AP, Tabin CJ. Regulation of skeletogenic differentiation in cranial dermal bone. Development. 2007;134(17):3133–44. doi: 10.1242/dev.002709.PubMedCrossRefGoogle Scholar
  44. 44.
    Bhatt S, Diaz R, Trainor PA, Wu DK, Kelley MW, Tam PL, et al. Signals and switches in mammalian neural crest cell differentiation signals and switches in mammalian neural crest cell differentiation. Cold Spring Harb Perspect Biol. 2013;5:a008326. doi: 10.1101/cshperspect.a008326.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Thorogood PV, Hinchliffe JR. An analysis of the condensation process during chondrogenesis in the embryonic chick hind limb. J Embryol Exp Morphol. 1975;33(3):581–606.PubMedGoogle Scholar
  46. 46.
    Ducy P, Karsenty G. Genetic control of cell differentiation in the skeleton. Curr Opin Cell Biol. 1998;10(5):614–9. http://www.ncbi.nlm.nih.gov/pubmed/9818172 PubMedCrossRefGoogle Scholar
  47. 47.
    Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89(5):755–64. doi: 10.1016/S0092-8674(00)80258-5.PubMedCrossRefGoogle Scholar
  48. 48.
    Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 1997;89(5):773–9. http://www.ncbi.nlm.nih.gov/pubmed/9182765 PubMedCrossRefGoogle Scholar
  49. 49.
    Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89(5):765–71. http://www.ncbi.nlm.nih.gov/pubmed/9182764 PubMedCrossRefGoogle Scholar
  50. 50.
    Akiyama H, Chaboissier MC, Martin JF, Schedl A, De Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002;16(21):2813–28. doi: 10.1101/gad.1017802.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet. 1999;22(1):85–9. doi: 10.1038/8792.PubMedCrossRefGoogle Scholar
  52. 52.
    Yan YL, Miller CT, Nissen RM, Singer A, Liu D, Kirn A, et al. A zebrafish sox9 gene required for cartilage morphogenesis. Development. 2002;129(21):5065–79. http://www.ncbi.nlm.nih.gov/pubmed/12397114\n; http://dev.biologists.org/content/129/21/5065.full.pdf PubMedGoogle Scholar
  53. 53.
    Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanović M, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 1994;372(6506):525–30. doi: 10.1038/372525a0.PubMedCrossRefGoogle Scholar
  54. 54.
    Kwok C, Weller PA, Guioli S, Foster JW, Mansour S, Zuffardi O, et al. Mutations in SOX9, the gene responsible for campomelic dysplasia and autosomal sex reversal. Am J Hum Genet. 1995;57(5):1028–36.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994;79(6):1111–20. http://www.ncbi.nlm.nih.gov/pubmed/8001137 PubMedCrossRefGoogle Scholar
  56. 56.
    Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol. 1997;17(4):2336–46. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=232082&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Zhang P, Jimenez SA, Stokes DG. Regulation of human COL9A1 gene expression. Activation of the proximal promoter region by SOX9. J Biol Chem. 2003;278(1):117–23. doi: 10.1074/jbc.M208049200.PubMedCrossRefGoogle Scholar
  58. 58.
    Liu Y, Li H, Tanaka K, Tsumaki N, Yamada Y. Identification of an enhancer sequence within the first intron required for cartilage-specific transcription of the α2(XI) collagen gene. J Biol Chem. 2000;275(17):12712–8. doi: 10.1074/jbc.275.17.12712.PubMedCrossRefGoogle Scholar
  59. 59.
    Yang J, Andre P, Ye L, Yang Y-Z. The Hedgehog signalling pathway in bone formation. Int J Oral Sci. 2015;14:73–9. doi: 10.1038/ijos.2015.14.CrossRefGoogle Scholar
  60. 60.
    Mak KK, Chen M-H, Day TF, Chuang P-T, Yang Y. Wnt/beta-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation. Development. 2006;133(18):3695–707. doi: 10.1242/dev.02546.PubMedCrossRefGoogle Scholar
  61. 61.
    Long F, Chung U, Ohba S, McMahon J, Kronenberg HM, McMahon AP. Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development. 2004;131(6):1309–18. doi: 10.1242/dev.01006.PubMedCrossRefGoogle Scholar
  62. 62.
    Hojo H, Ohba S, Taniguchi K, Shirai M, Yano F, Saito T, et al. Hedgehog-Gli activators direct osteo-chondrogenic function of bone morphogenetic protein toward osteogenesis in the perichondrium. J Biol Chem. 2013;288(14):9924–32. doi: 10.1074/jbc.M112.409342.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Yoshida T, Vivatbutsiri P, Morriss-Kay G, Saga Y, Iseki S. Cell lineage in mammalian craniofacial mesenchyme. Mech Dev. 2008;125(9–10):797–808. doi: 10.1016/j.mod.2008.06.007.PubMedCrossRefGoogle Scholar
  64. 64.
    Lenton K, James AW, Manu A, Brugmann SA, Birker D, Nelson ER, et al. Indian hedgehog positively regulates calvarial ossification and modulates bone morphogenetic protein signaling. Genesis. 2011;49(10):784–96. doi: 10.1002/dvg.20768.PubMedCrossRefGoogle Scholar
  65. 65.
    Jenkins D, Seelow D, Jehee F, Perlyn C, Alonso L, Bueno D, et al. RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am J Hum Genet. 2007;80(6):1162–70.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Rice DPC, Connor EC, Veltmaat JM, Lana-Elola E, Veistinen L, Tanimoto Y, et al. Gli3Xt-J/Xt-J mice exhibit lambdoid suture craniosynostosis which results from altered osteoprogenitor proliferation and differentiation. Hum Mol Genet. 2010;19(17):3457–67. doi: 10.1093/hmg/ddq258.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Otto F, Kanegane H, Mundlos S. Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Hum Mutat. 2002;19(3):209–16. doi: 10.1002/humu.10043.PubMedCrossRefGoogle Scholar
  68. 68.
    Sperber G, Sperber SM, Guttmann GD. Craniofacial embryogenetics and development. 2nd ed. Shelton: PMPH; 2010.Google Scholar
  69. 69.
    Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005;36(12):1392–404. doi: 10.1016/j.injury.2005.07.019.PubMedCrossRefGoogle Scholar
  70. 70.
    Gerstenfeld LC, Alkhiary YM, Krall EA, Nicholls FH, Stapleton SN, Fitch JL, et al. Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem. 2006;54(11):1215–28. doi: 10.1369/jhc.6A6959.2006.PubMedCrossRefGoogle Scholar
  71. 71.
    Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res. 2008;87(2):107–18. doi: 10.1177/154405910808700215.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hankenson K, Zimmermann G, Marcucio RS. Biologic perspectives of delayed fracture healing. Injury. 2014;45(Suppl 2):S8–S15. doi: 10.1002/jcp.24872.The.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551–5. doi: 10.1016/j.injury.2011.03.031.THE.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Morgan EF, Mason ZD, Chien KB, Pfeiffer AJ, George L, Einhorn TA, Gerstenfeld LC. Micro-computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function. Bone. 2009;44(2):335–44. doi: 10.1016/j.bone.2008.10.039.Micro-Computed.PubMedCrossRefGoogle Scholar
  75. 75.
    Kon T, Cho TJ, Aizawa T, Yamazaki M, Nooh N, Graves D, et al. Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res. 2001;16(6):1004–14. doi: 10.1359/jbmr.2001.16.6.1004.PubMedCrossRefGoogle Scholar
  76. 76.
    Sandberg MM, Hannu TA, Vuorio EI. Gene expression during bone repair. Clin Orthop Relat Res. 1993;289:292–312.Google Scholar
  77. 77.
    Bostrom M. Expression of bone morphogenetic proteins in fracture healing. Clin Orthop Relat Res. 1998;(355 Suppl):S116–23. http://www.ncbi.nlm.nih.gov/pubmed/9917632
  78. 78.
    Wang X, Yu YY, Lieu S, Yang F, Lang J, Lu C, et al. MMP9 regulates the cellular response to inflammation after skeletal injury. Bone. 2013;52(1):111–9. doi: 10.1016/j.bone.2012.09.018.MMP9.PubMedCrossRefGoogle Scholar
  79. 79.
    Cho T-J, Gerstenfeld LC, Einhorn T a. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res. 2002;17(3):513–20. doi: 10.1359/jbmr.2002.17.3.513.PubMedCrossRefGoogle Scholar
  80. 80.
    Wang Q, Huang C, Xue M, Zhang. Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing. Bone. 2011;48(3):524–32. doi: 10.1016/j.bone.2010.10.178.Expression.PubMedCrossRefGoogle Scholar
  81. 81.
    Colnot C, Thompson Z, Miclau T, Werb Z, Helms JA. Altered fracture repair in the absence of MMP9. Development. 2003;130(17):4123–33. doi: 10.1242/dev.00559.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Tsay A, Fitch J, et al. Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res. 2003;18(9):1584–92. doi: 10.1359/jbmr.2003.18.9.1584.PubMedCrossRefGoogle Scholar
  83. 83.
    Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchahal J. TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc Natl Acad Sci U S A. 2011;108(4):1585–90. doi: 10.1073/pnas.1018501108.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am. 2003;85-A(8):1544–52.PubMedCrossRefGoogle Scholar
  85. 85.
    Wang X-X, Wang X, Li Z-L. Effects of mandibular distraction osteogenesis on the inferior alveolar nerve: an experimental study in monkeys. Plast Reconstr Surg. 2002;109(7):2373–83. http://www.ncbi.nlm.nih.gov/pubmed/12045565 PubMedCrossRefGoogle Scholar
  86. 86.
    Bodine PVN, Seestaller-Wehr L, Kharode YP, Bex FJ, Komm BS. Bone anabolic effects of parathyroid hormone are blunted by deletion of the Wnt antagonist secreted frizzled-related protein-1. J Cell Physiol. 2007;210(2):352–7. doi: 10.1002/jcp.20834.PubMedCrossRefGoogle Scholar
  87. 87.
    Guo J, Liu M, Yang D, Bouxsein ML, Saito H, Galvin RJS, et al. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab. 2010;11(2):161–71. doi: 10.1021/ja8019214.Optimization.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Jilka RL, Brien CAO, Ali AA, Roberson P, Weinstein RS, Manolagas SC. Formation by actions on post-mitotic. Bone. 2010;44(2):275–86. doi: 10.1016/j.bone.2008.10.037.INTERMITTENT.CrossRefGoogle Scholar
  89. 89.
    Craft PD, Mani MM, Pazel J, Masters FW. Experimental study of healing in fractures of membranous bone. Plast Reconstr Surg. 1974;55(3):321–5.CrossRefGoogle Scholar
  90. 90.
    Paccione MF, Warren SM, Spector JA, Greenwald JA, Bouletreau PJ, Longaker MT. A mouse model of mandibular osteotomy healing. J Craniofac Surg. 2001;12(5):444–50. doi: 10.1097/00001665-200109000-00008.PubMedCrossRefGoogle Scholar
  91. 91.
    Hasegawa T, Miwa M, Sakai Y, Nikura T, Lee SY, Oe K, et al. Mandibular hematoma cells as a potential reservoir for osteoprogenitor cells in fractures. J Oral Maxillofac Surg. 2012;70(3):599–607. doi: 10.1016/j.joms.2011.03.043.PubMedCrossRefGoogle Scholar
  92. 92.
    Oe K, Miwa M, Sakai Y, Lee SY, Kuroda R, Kurosaka M. An in vitro study demonstrating that haematomas found at the site of human fractures contain progenitor cells with multilineage capacity. J Bone Joint Surg Br. 2007;89-B(1):133–8. doi: 10.1302/0301-620X.89B1.18286.CrossRefGoogle Scholar
  93. 93.
    Spector JA, Luchs JS, Mehrara BJ, Greenwald JA, Smith LP, Longaker MT. Expression of bone morphogenetic proteins during membranous bone healing. Plast Reconstr Surg. 2001;107(1):124–34.PubMedCrossRefGoogle Scholar
  94. 94.
    Steinbrech DS, Mehrara BJ, Rowe NM, Dudziak ME, Luchs JS, Saadeh PB, et al. Gene expression of TGF-beta, TGF-beta receptor, and extracellular matrix proteins during membranous bone healing in rats. Plast Reconstr Surg. 2000;105(6):2028–38.PubMedCrossRefGoogle Scholar
  95. 95.
    Aronson J, Good B, Stewart C, Harrison B, Harp J. Preliminary studies of mineralization during distraction osteogenesis. Clin Orthop Relat Res. 1990a;(250):43–9. http://www.ncbi.nlm.nih.gov/pubmed/2293943
  96. 96.
    Aronson J, Good B, Stewart C, Harrison B, Harp J. Preliminary studies of mineralization during distraction osteogenesis. Clin Orthop Relat Res. 1990b;250:43–9.Google Scholar
  97. 97.
    Jazrawi LM, Majeska RJ, Klein ML, Kagel E, Stromberg L, Einhorn TA. Bone and cartilage formation in an experimental model of distraction osteogenesis. J Orthop Trauma. 1998;12(2):111–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Vauhkonen M, Peltonen J, Karaharju E, Aalto K, Alitalo I. Collagen synthesis and mineralization in the early phase of distraction bone healing. Bone Miner. 1990;10(3):171–81. http://www.ncbi.nlm.nih.gov/pubmed/2224204 PubMedCrossRefGoogle Scholar
  99. 99.
    Sato M, Yasui N, Nakase T, Kawahata H, Sugimoto M, Hirota S, et al. Expression of bone matrix proteins mRNA during distraction osteogenesis. J Bone Miner Res. 1998;13(8):1221–31. doi: 10.1359/jbmr.1998.13.8.1221.PubMedCrossRefGoogle Scholar
  100. 100.
    Yasui N, Sato M, Ochi T, Kimura T, Kawahata H, Kitamura Y, Nomura S. Three modes of ossification during distraction osteogenesis in the rat. J Bone Joint Surg Br. 1997;79(5):824–30. doi: 10.1302/0301-620X.79B5.7423.PubMedCrossRefGoogle Scholar
  101. 101.
    Li G, Virdi AS, Ashhurst DE, Simpson AH, Triffitt JT. Tissues formed during distraction osteogenesis in the rabbit are determined by the distraction rate: localization of the cells that express the mRNAs and the distribution of types I and II collagens. Cell Biol Int. 2000;24(1):25–33. doi: 10.1006/cbir.1999.0449.PubMedCrossRefGoogle Scholar
  102. 102.
    Karaharju EO, Aalto K, Kahri A, Lindberg L-A, Kallio T, Karaharju-Suvanto T, et al. Distraction bone healing. Clin Orthop Relat Res. 1993;297:38–43.Google Scholar
  103. 103.
    Hamanishi C, Yoshii T, Totani Y, Tanaka S. Lengthened callus activated by axial shortening. Clin Orthop Relat Res. 1994;307(307):250–4.Google Scholar
  104. 104.
    Ilizarov GA. Transosseous osteosynthesis. In: Green SA, editor. vol. 1. Berlin: Springer; 1992. doi: 10.1017/CBO9781107415324.004
  105. 105.
    Cho T-J, Kim JA, Chung CY, Yoo WJ, Gerstenfeld LC, Einhorn TA, Choi IH. Expression and role of interleukin-6 in distraction osteogenesis. Calcif Tissue Int. 2007;80(3):192–200. doi: 10.1007/s00223-006-0240-y.PubMedCrossRefGoogle Scholar
  106. 106.
    Farhadieh RD, Dickinson R, Yu Y, Gianoutsos MP, Walsh WR. The role of transforming growth factor-beta, insulin-like growth factor I, and basic fibroblast growth factor in distraction osteogenesis of the mandible. J Craniofac Surg. 1999;10(1):80–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Holbein O, Neidlinger-Wilke C, Suger G, Kinzl L, Claes L. Ilizarov callus distraction produces systemic bone cell mitogens. J Orthop Res. 1995;13(4):629–38. doi: 10.1002/jor.1100130420.PubMedCrossRefGoogle Scholar
  108. 108.
    Lammens J, Liu Z, Aerssens J, Dequeker J, Fabry G. Distraction bone healing versus osteotomy healing: a comparative biochemical analysis. J Bone Miner Res. 1998;13(2):279–86. doi: 10.1359/jbmr.1998.13.2.279.PubMedCrossRefGoogle Scholar
  109. 109.
    Sato M, Ochi T, Nakase T, Hirota S, Kitamura Y, Nomura S, Yasui N. Mechanical tension-stress induces expression of bone morphogenetic protein (BMP)-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis. J Bone Miner Res. 1999;14(7):1084–95. doi: 10.1359/jbmr.1999.14.7.1084.PubMedCrossRefGoogle Scholar
  110. 110.
    Rauch F, Lauzier D, Croteau S, Travers R, Glorieux FH, Hamdy R. Temporal and spatial expression of bone morphogenetic protein-2, -4, and -7 during distraction osteogenesis in rabbits. Bone. 2000;26(6):611–7.Google Scholar
  111. 111.
    Ashinoff RL, Cetrulo CL, Galiano RD, Dobryansky M, Bhatt KA, Ceradini DJ, et al. Bone morphogenic protein-2 gene therapy for mandibular distraction osteogenesis. Ann Plast Surg. 2004;52(6):585–90; discussion 591. http://www.ncbi.nlm.nih.gov/pubmed/15166991
  112. 112.
    Nuntanaranont T, Suttapreyasri S, Vongvatcharanon S. Quantitative expression of bone-related cytokines induced by mechanical tension-stress during distraction osteogenesis in a rabbit mandible. J Investig Clin Dent. 2014;5(4):255–65. doi: 10.1111/jicd.12034.PubMedCrossRefGoogle Scholar
  113. 113.
    Khanal A, Yoshioka I, Tominaga K, Furuta N, Habu M, Fukuda J. The BMP signaling and its Smads in mandibular distraction osteogenesis. Oral Dis. 2008;14(4):347–55. http://www.ncbi.nlm.nih.gov/pubmed/18449963 PubMedCrossRefGoogle Scholar
  114. 114.
    Mehrara BJ, Longaker MT. New developments in craniofacial surgery research. Cleft Palate Craniofac J. 1999;36(5):377–87. doi: 10.1597/1545-1569(1999)036<0377:NDICSR>2.3.CO;2.PubMedCrossRefGoogle Scholar
  115. 115.
    Pacicca DM, Patel N, Lee C, Salisbury K, Lehmann W, Carvalho R, et al. Expression of angiogenic factors during distraction osteogenesis. Bone. 2003;33(6):889–98. http://www.ncbi.nlm.nih.gov/pubmed/14678848 PubMedCrossRefGoogle Scholar
  116. 116.
    Carvalho RS, Einhorn TA, Lehmann W, Edgar C, Al-Yamani A, Apazidis A, et al. The role of angiogenesis in a murine tibial model of distraction osteogenesis. Bone. 2004;34(5):849–61. doi: 10.1016/j.bone.2003.12.027.PubMedCrossRefGoogle Scholar
  117. 117.
    Choi IH, Chung CY, Cho TJ, Yoo WJ. Angiogenesis and mineralization during distraction osteogenesis. J Korean Med Sci. 2002;17(4):435–47. doi: 10.3346/jkms.2002.17.4.435.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Pérez-Sayáns M, Somoza-Martín JM, Barros-Angueira F, Rey JMG, García-García A. RANK/RANKL/OPG role in distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2010;109(5):679–86. doi: 10.1016/j.tripleo.2009.10.042.CrossRefGoogle Scholar
  119. 119.
    Zhu W-Q, Wang X, Wang X-X, Wang Z-Y. Temporal and spatial expression of osteoprotegerin and receptor activator of nuclear factor -kappaB ligand during mandibular distraction in rats. J Craniomaxillofac Surg. 2007;35(2):103–11. doi: 10.1016/j.jcms.2006.12.001.PubMedCrossRefGoogle Scholar
  120. 120.
    Fang TD, Salim A, Xia W, Nacamuli RP, Guccione S, Song HM, et al. Angiogenesis is required for successful bone induction during distraction osteogenesis. J Bone Miner Res. 2005;20(7):1114–24. doi: 10.1359/JBMR.050301.PubMedCrossRefGoogle Scholar
  121. 121.
    Aronson J. Temporal and spatial increases in blood flow during distraction osteogenesis. Clin Orthop Relat Res. 1994a;(301):124–31. http://www.ncbi.nlm.nih.gov/pubmed/8156663
  122. 122.
    Bragdon B, Lybrand K, Gerstenfeld L. Overview of biological mechanisms and applications of three murine models of bone repair: closed fracture with intramedullary fixation, distraction osteogenesis, and marrow ablation by reaming. Curr Protoc Mouse Biol. 2015;5:21–34. doi: 10.1002/9780470942390.mo140166.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Matsubara H, Hogan DE, Morgan EF, Mortolock DP, Einhorn TA, Gerstenfeld LC. Vascular tissues are a primary source of BMP2 expression during bone formation induced by distraction osteogenesis. Bone. 2012;51(1):168–80. doi: 10.1016/j.drugalcdep.2008.02.002.A.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Morgan EF, Hussein AI, Al-Awadhi BA, Hogan DE, Matsubara H, Al-Aql ZS, et al. Vascular development during distraction osteogenesis proceeds by sequential intramuscular arteriogenesis followed by intraosteal angiogenesis. Bone. 2012;51(3):535–45. doi: 10.1016/j.bone.2012.05.008.Vascular.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Jacobsen KA, Al-Aql ZS, Wan C, Fitch JL, Stapleton SN, Mason ZD, et al. Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling. J Bone Miner Res. 2008;23(5):596–609. doi: 10.1359/jbmr.080103.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Donneys A, Farberg AS, Tchanque-Fossuo CN, Deshpande SS, Buchman SR. Deferoxamine enhances the vascular response of bone regeneration in mandibular distraction osteogenesis. Plast Reconstr Surg. 2012a;129(4):850–6. doi: 10.1097/PRS.0b013e31824422f2.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Farberg AS, Sarhaddi D, Donneys A, Deshpande SS, Buchman SR. Deferoxamine enhances bone regeneration in mandibular distraction osteogenesis. Plast Reconstr Surg. 2014;133(3):666–71. doi: 10.1097/01.prs.0000438050.36881.a9.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Colnot C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res. 2009;24(2):274–82. doi: 10.1359/jbmr.081003.PubMedCrossRefGoogle Scholar
  129. 129.
    Shibazaki R, Maki K, Tachikawa T, Shibasaki Y, Hinton RJ, Carlson DS, Opperman LA. Changes in parathyroid hormone-related protein and 3-dimensional trabecular bone structure of the mandibular condyle following mandibular distraction osteogenesis in growing rats. J Oral Maxillofac Surg. 2005;63(4):505–12. doi: 10.1016/j.joms.2004.12.005.PubMedCrossRefGoogle Scholar
  130. 130.
    Kasaai B, Moffatt P, Al-Salmi L, Lauzier D, Lessard L, Hamdy RC. Spatial and temporal localization of WNT signaling proteins in a mouse model of distraction osteogenesis. J Histochem Cytochem. 2012;60(3):219–28. doi: 10.1369/0022155411432010.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Nott RL, Stelnicki EJ, Mack JA, Ben Y, Mitchell R, Mooney MP. Changes in the protein expression of hedgehog and patched-1 in perisutural tissues induced by cranial distraction. Plast Reconstr Surg. 2002;110(2):523–32. http://www.ncbi.nlm.nih.gov/pubmed/12142671 PubMedCrossRefGoogle Scholar
  132. 132.
    Lauterburg MT, Exner GU, Jacob HAC. Forces involved in lower limb lengthening: an in vivo biomechanical study. J Orthop Res. 2006;24(9):1815–22. doi: 10.1002/jor.20217.PubMedCrossRefGoogle Scholar
  133. 133.
    Aarnes GT, Steen H, Ludvigsen P, Waanders NA, Huiskes R, Goldstein SA. In vivo assessment of regenerate axial stiffness in distraction osteogenesis. J Orthop Res. 2005;23(2):494–8. doi: 10.1016/j.orthres.2004.08.024.PubMedCrossRefGoogle Scholar
  134. 134.
    Carter DR, Beaupre GS, Giori NJ, Helms JA. Mechanobiology of skeletal regeneration. Clin Orthop Relat Res. 1998;355S:S41–55.CrossRefGoogle Scholar
  135. 135.
    Loboa EG, Fang TD, Parker DW, Warren SM, Fong KD, Longaker MT, Carter DR. Mechanobiology of mandibular distraction osteogenesis: finite element analyses with a rat model. J Orthop Res. 2005;23(3):663–70. doi: 10.1016/j.orthres.2004.09.010.PubMedCrossRefGoogle Scholar
  136. 136.
    Loboa EG, Fang TD, Warren SM, Lindsey DP, Fong KD, Longaker MT, Carter DR. Mechanobiology of mandibular distraction osteogenesis: experimental analyses with a rat model. Bone. 2004;34:336–43. doi: 10.1016/j.bone.2003.10.012.PubMedCrossRefGoogle Scholar
  137. 137.
    Shu Z, Xin-sheng C, Bing W. Mechanotransduction in osteoblast and osteocyte regulation***☆○◆. J Clin Rehabil Tissue Eng Res. 2011;15(24):4530–6.Google Scholar
  138. 138.
    Natu SS, Ali I, Alam S, Giri KY, Agarwal A, Kulkarni VA. The biology of distraction osteogenesis for correction of mandibular and craniomaxillofacial defects: a review. Dent Res J. 2014;11(1):16–26. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3955310&tool=pmcentrez&rendertype=abstract Google Scholar
  139. 139.
    Goodman CA, Hornberger TA, Robling AG. Bone and skeletal muscle: key players in mechanotransduction and potential overlapping mechanisms. Bone. 2015;80:24–36. doi: 10.1016/j.bone.2015.04.014.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S. Mechanosensation and transduction in osteocytes. Bone. 2013;54(2):182–90. doi: 10.1016/j.bone.2012.10.013.PubMedCrossRefGoogle Scholar
  141. 141.
    Lanyon LE. Osteocytes, strain detection, bone modeling and remodeling. Calcif Tissue Int. 1993;53 Suppl 1:S102–6; discussion S106–7. http://www.ncbi.nlm.nih.gov/pubmed/8275362
  142. 142.
    Bonivtch AR, Bonewald LF, Nicolella DP. Tissue strain amplification at the osteocyte lacuna: a microstructural finite element analysis. Mater Eng. 2007;40(10):2199–206.Google Scholar
  143. 143.
    Han Y, Cowin SC, Schaffler MB, Weinbaum S. Mechanotransduction and strain amplification in osteocyte cell processes. Proc Natl Acad Sci U S A. 2004;101(47):16689–94. doi: 10.1073/pnas.0407429101.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Davidson EH, Sultan SM, Butala P, Knobel D, Warren SM. Lacunocanalicular fluid flow transduces mechanical tension stress during distraction osteogenesis. J Craniofac Surg. 2013;24(5):1558–64. doi: 10.1097/SCS.0b013e31828f2060.PubMedCrossRefGoogle Scholar
  145. 145.
    Malone AMD, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A. 2007;104(33):13325–30. doi: 10.1073/pnas.0700636104.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Li J, Burr DB, Turner CH. Suppression of prostaglandin synthesis with NS-398 has different effects on endocortical and periosteal bone formation induced by mechanical loading. Calcif Tissue Int. 2002;70(4):320–9. doi: 10.1007/s00223-001-1025-y.PubMedCrossRefGoogle Scholar
  147. 147.
    Sawakami K, Robling AG, Ai M, Pitner ND, Liu D, Warden SJ, et al. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem. 2006;281(33):23698–711. doi: 10.1074/jbc.M601000200.PubMedCrossRefGoogle Scholar
  148. 148.
    Kesavan C, Wergedal JE, Lau K-HW, Mohan S. Conditional disruption of IGF-I gene in type 1α collagen-expressing cells shows an essential role of IGF-I in skeletal anabolic response to loading. Am J Physiol Endocrinol Metab. 2011;301(6):E1191–7. doi: 10.1152/ajpendo.00440.2011.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Lau K-HW, Baylink DJ, Zhou X-D, Rodriguez D, Bonewald LF, Li Z, et al. Osteocyte-derived insulin-like growth factor I is essential for determining bone mechanosensitivity. Am J Physiol Endocrinol Metab. 2013;305(2):E271–81. doi: 10.1152/ajpendo.00092.2013.PubMedCrossRefGoogle Scholar
  150. 150.
    Watanuki M, Sakai A, Sakata T, Tsurukami H, Miwa M, Uchida Y, et al. Role of inducible nitric oxide synthase in skeletal adaptation to acute increases in mechanical loading. J Bone Miner Res. 2002;17(6):1015–25. doi: 10.1359/jbmr.2002.17.6.1015.PubMedCrossRefGoogle Scholar
  151. 151.
    Hong P, Boyd D, Beyea SD, Bezuhly M. Enhancement of bone consolidation in mandibular distraction osteogenesis: a contemporary review of experimental studies involving adjuvant therapies. J Plast Reconstr Aesthet Surg. 2013;66(7):883–95. doi: 10.1016/j.bjps.2013.03.030.PubMedCrossRefGoogle Scholar
  152. 152.
    Buchman SR, Ignelzi MA, Radu C, Wilensky J, Rosenthal AH, Tong L, et al. Unique rodent model of distraction osteogenesis of the mandible. Ann Plast Surg. 2002;49(5):511–9. doi: 10.1097/01.SAP.0000015490.10557.33.PubMedCrossRefGoogle Scholar
  153. 153.
    Felice PA, Ahsan S, Perosky JE, Deshpande SS, Nelson NS, Donneys A, et al. Prophylactic amifostine preserves the biomechanical properties of irradiated bone in the murine mandible. Plast Reconstr Surg. 2014;133:314e–21e. doi: 10.1097/01.prs.0000438454.29980.f8.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Deshpande SS, Gallagher KK, Donneys A, Nelson NS, Guys NP, Felice PA, et al. Stem cells rejuvenate radiation-impaired vasculogenesis in murine distraction osteogenesis. Plast Reconstr Surg. 2015;135(3):799–806. doi: 10.1097/PRS.0000000000001024.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Fregene A, Jing XL, Monson LA, Buchman SR. Alteration in volumetric bone mineralization density gradation patterns in mandibular distraction osteogenesis following radiation therapy. Plast Reconstr Surg. 2009;124(4):1237–44. doi: 10.1097/PRS.0b013e3181b5a42f.PubMedCrossRefGoogle Scholar
  156. 156.
    Schwarz DA, Jamali AM, Kakwan MS, Fregene A, Arman KG, Buchman SR. Biomechanical assessment of regenerate integrity in irradiated mandibular distraction osteogenesis. Plast Reconstr Surg. 2009;123(2 Suppl 1):114S–22S. doi: 10.1097/PRS.0b013e318191c5d2.PubMedCrossRefGoogle Scholar
  157. 157.
    Tchanque-Fossuo CN, Monson LA, Farberg AS, Donneys A, Zehtabzadeh AJ, Razdolsky ER, Buchman SR. Dose-response effect of human equivalent radiation in the murine mandible: part I. A histomorphometric assessment. Plast Reconstr Surg. 2011;128(1):114–21. doi: 10.1097/PRS.0b013e31821741d4.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Deshpande SS, Gallagher KK, Donneys A, Tchanque-Fossuo CN, Sarhaddi D, Nelson NS, et al. Parathyroid hormone therapy mollifies radiation-induced biomechanical degradation in murine distraction osteogenesis. Plast Reconstr Surg. 2013a;132(1):91–100. doi: 10.1097/PRS.0b013e3182910ae7.CrossRefGoogle Scholar
  159. 159.
    Deshpande S, James AW, Blough J, Donneys A, Wang SC, Cederna PS, et al. Reconciling the effects of inflammatory cytokines on mesenchymal cell osteogenic differentiation. J Surg Res. 2013b;185(1):278–85. doi: 10.1016/j.jss.2013.06.063.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Tchanque-Fossuo CN, Donneys A, Razdolsky ER, Monson LA, Farberg AS, Deshpande SS, et al. Quantitative histologic evidence of amifostine-induced cytoprotection in an irradiated murine model of mandibular distraction osteogenesis. Plast Reconstr Surg. 2012;130(6):1199–207. doi: 10.1097/PRS.0b013e31826d2201.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christopher M. Runyan
    • 1
  • Roberto L. Flores
    • 1
    Email author
  • Joseph G. McCarthy
    • 1
  1. 1.Wyss Department of Plastic SurgeryNYU Langone Medical CenterNew YorkUSA

Personalised recommendations