Skip to main content

Predictive Mapping of the Nodule Abundance and Mineral Resource Estimation in the Clarion-Clipperton Zone Using Artificial Neural Networks and Classical Geostatistical Methods

  • Chapter
  • First Online:
Deep-Sea Mining

Abstract

The licence areas for the exploration of manganese nodule fields in the equatorial Pacific Ocean cover 75,000 km2 each. The purpose of this study was to predict the nodule abundance of nodule fields over an entire licence area using artificial neural network statistics. Bathymetry and backscatter information of the seafloor and different derived datasets, as well as sampling point data (box core stations), were used as model input data. Based on the prediction results, mineral resources of manganese nodules at different cut-off grades were calculated and the estimated resources were classified according to international codes. In principle, the estimation of tonnages of metals such as nickel, copper, cobalt, manganese, molybdenum, etc. is also possible based on the prediction results and the average metal contents of the nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akin H, Siemens H (1988) Praktische Geostatistik: Eine Einführung für den Bergbau und die Geowissenschaften. Springer, Berlin, p 304

    Chapter  Google Scholar 

  • Barth A, Knobloch A, Noack S, Schmidt F (2014) Neural network based spatial modeling of natural phenomena and events. In: Khosrow-Pour M (ed) Systems and software development, modeling, and analysis: new perspectives and methodologies. IGI Global, p 186–211. ISBN 13: 9781466660984

    Google Scholar 

  • Beak (2012) advangeo® prediction software user’s guide. Version 2.0 for ArcGIS 10.0. Beak Consultants GmbH, Freiberg, 2007–2012

    Google Scholar 

  • Benndorf J (2015) Vorratsklassifikation nach internationalen Standards–Anforderungen und Modellansätze in der Lagerstättenbearbeitung. Markscheidewesen 122(2–3):6–14

    Google Scholar 

  • Bishop MC (2008) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  • Brown W, Groves D, Gedeon T (2003) Use of Fuzzy membership input layers to combine subjective geological knowledge and empirical data in a neural network method for mineral-potential mapping. Nat Resour Res 12(3):183–200. doi:10.1023/A:1025175904545

    Article  Google Scholar 

  • CRIRSCO (2012) International Reporting Template for the public reporting of Exploration Results, Mineral Resources and Mineral Reserves. Committee for Mineral Reserves International Reporting Standards, ICMM, Nov 2013. http://www.crirsco.com/templates/international_reporting_template_november_2013.pdf. Accessed 31 Jan 2015

  • GDMB (1983) Klassifikation von Lagerstättenvorräten mit Hilfe der Geostatistik: Vorträge einer Diskussionstagung der Fachsektion Lagerstättenforschung in der GMDB. Schriftenreihe der GDMB; Heft 29. Herausgeber: Gesellschaft Deutscher Metallhütten-und Bergleute r. V., Clausthal-Zellerfeld. Wissenschaftliche Redaktion: W. Ehrismann und H. W. Walter. Verlag Chemie, Weinheim, Deerfield Beach, Basel

    Google Scholar 

  • Hassoun M (1995) Fundamentals of artificial neural networks. MIT Press, Cambridge, p 537

    Google Scholar 

  • Haykins S (1998) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • JORC (2012) The JORC code. Australasian code for reporting of exploration results, mineral resources and ore reserves. AusIMM, Carlton. http://www.jorc.org/docs/jorc_code2012.pdf. Accessed 31 Jan 2016

  • Kasabov NK (1996) Foundations of neural networks, fuzzy logic, and knowledge engineering. MIT Press, Cambridge

    Google Scholar 

  • Kuhn T, Rühlemann C, Wiedicke-Hombach M (2012) Developing a strategy for the exploration of vast seafloor areas for prospective manganese nodule fields. In: Zhou H, Morgan CL (eds) Marine minerals: finding the right balance of sustainable development and environmental protection. The Underwater Mining Institute, Shanghai, K1-9

    Google Scholar 

  • Lamothe D (2009) Assessment of the mineral potential for porphyry Cu-Au ± Mo deposits in the Baie-James region. Document published by Géologie Québec (EP 2009-02). http://collections.banq.qc.ca/ark:/52327/bs1905189. Accessed 24 Oct 2010

  • Mitchell NC (1993) Comment on the mapping of iron-manganese nodule fields using reconnaissance sonars such as GLORIA. Geo-Mar Lett 13:244–247

    Article  Google Scholar 

  • NASA (2014) Ocean Color Web: Data Access-Level 3 Browser. Aqua MODIS Data. Ocean Biology Processing Group (OBPG), NASA Goddard Space Flight Center. http://oceancolor.gsfc.nasa.gov/cgi/l3. Accessed 5 Nov 2014

  • NOAA (2014) OSCAR: Ocean Surface Current Analyses–Real time. Data Download for Ocean Surface Currents. OSCAR Project Office, Earth and Space Research. http://www.oscar.noaa.gov/datadisplay/oscar_datadownload.php. Accessed 5 Nov 2014

  • Olden JO, Jackson DA (2002) Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecol Model 154:135–150

    Article  Google Scholar 

  • Olden JD, Joy MK, Death RG (2004) An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol Model 178:389–397

    Article  Google Scholar 

  • Rühlemann C, Kuhn T, Vink A, Wiedicke M (2013) Methods of manganese nodule exploration in the German license area. In: Morgan CL (ed) Recent developments in Atlantic seabed minerals exploration and other topics of timely interest. The Underwater Mining Institute, Rio de Janeiro, p 7

    Google Scholar 

  • Scanlon KM, Masson DG (1992) Fe-Mn nodule field indicated by GLORIA, North of the Puerto Rico Trench. Geo-Mar Lett 12:208–213

    Article  Google Scholar 

  • Wiedicke-Hombach M, Shipboard Scientific Party (2009) Cruise Report “Mangan 2008”, RV Kilo Moana, 13 Oct–22 Nov 2008. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, 89 pp

    Google Scholar 

  • Wiedicke-Hombach M, Shipboard Scientific Party (2010) Cruise Report “Mangan 2009”, RV Kilo Moana, 20 Oct–27 Nov 2009. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, 64 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kuhn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Knobloch, A., Kuhn, T., Rühlemann, C., Hertwig, T., Zeissler, KO., Noack, S. (2017). Predictive Mapping of the Nodule Abundance and Mineral Resource Estimation in the Clarion-Clipperton Zone Using Artificial Neural Networks and Classical Geostatistical Methods. In: Sharma, R. (eds) Deep-Sea Mining. Springer, Cham. https://doi.org/10.1007/978-3-319-52557-0_6

Download citation

Publish with us

Policies and ethics