Advertisement

Gas Accretion via Lyman Limit Systems

  • Nicolas LehnerEmail author
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 430)

Abstract

In cosmological simulations, a large fraction of the partial Lyman limit systems (pLLSs; \(16\lesssim \log N_{\text{HI}} < 17.2\)) and LLSs (17. 2 ≤ logNHI < 19) probes large-scale flows in and out of galaxies through their circumgalactic medium (CGM). The overall low metallicity of the cold gaseous streams feeding galaxies seen in these simulations is the key to differentiating them from metal rich gas that is either outflowing or being recycled. In recent years, several groups have empirically determined an entirely new wealth of information on the pLLSs and LLSs over a wide range of redshifts. A major focus of the recent research has been to empirically determine the metallicity distribution of the gas probed by pLLSs and LLSs in sizable and representative samples at both low (z < 1) and high (z > 2) redshifts. Here I discuss unambiguous evidence for metal-poor gas at all z probed by the pLLSs and LLSs. At z < 1, all the pLLSs and LLSs so far studied are located in the CGM of galaxies with projected distances \(\lesssim\) 100–200 kpc. Regardless of the exact origin of the low-metallicity pLLSs/LLSs, there is a significant mass of cool, dense, low-metallicity gas in the CGM that may be available as fuel for continuing star formation in galaxies over cosmic time. As such, the metal-poor pLLSs and LLSs are currently among the best observational evidence of cold, metal-poor gas accretion onto galaxies.

Keywords

Star Formation Column Density High Redshift Starburst Galaxy Cosmological Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

It is a pleasure to thank all my collaborators, current and past graduate students who all have been key on shedding light on these (now much less mysterious) absorbers over the last few years, and, in particular, Chris Howk, John O’Meara, and Xavier Prochaska who have been critical players on many aspects to push forward these projects at both low and high redshifts. I also thank Chris Howk for reading and providing useful comments on this manuscript and Lorrie Straka for reducing the MUSE data and providing the galaxy redshifts that help to make Fig. 7. The writing and some of the research presented in this work has been supported by NASA through the Astrophysics Data Analysis Program (ADAP) grant NNX16AF52G, HST-AR-12854, and HST-GO-14269 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

References

  1. Aguirre, A., Schaye, J., Kim, T.-S., et al. 2004, ApJ, 602, 38ADSCrossRefGoogle Scholar
  2. Akerman, C. J., Carigi, L., Nissen, P. E., Pettini, M., & Asplund, M. 2004, A&A, 414, 931ADSCrossRefGoogle Scholar
  3. Bahcall, J. N., Bergeron, J., Boksenberg, A., et al. 1993, ApJS, 87, 1ADSCrossRefGoogle Scholar
  4. Battisti, A. J., Meiring, J. D., Tripp, T. M., et al. 2012, ApJ, 744, 93ADSCrossRefGoogle Scholar
  5. Becker, G. D., Sargent, W. L. W., Rauch, M., & Carswell, R. F. 2012, ApJ, 744, 91ADSCrossRefGoogle Scholar
  6. Bensby, T., & Feltzing, S. 2006, MNRAS, 367, 1181ADSCrossRefGoogle Scholar
  7. Berg, D. A., Skillman, E. D., Henry, R. B. C., Erb, D. K., & Carigi, L. 2016, ApJ, 827, 126ADSCrossRefGoogle Scholar
  8. Bordoloi, R., Lilly, S. J., Knobel, C., et al. 2011, ApJ, 743, 10ADSCrossRefGoogle Scholar
  9. Bordoloi, R., Tumlinson, J., Werk, J. K., et al. 2014, ApJ, 796, 136ADSCrossRefGoogle Scholar
  10. Bouché, N., Hohensee, W., Vargas, R., et al. 2012, MNRAS, 426, 801ADSCrossRefGoogle Scholar
  11. Bouché, N., Finley, H., Schroetter, I., et al. 2016, ApJ, 820, 121ADSCrossRefGoogle Scholar
  12. Bromm, V., & Loeb, A. 2003, Nature, 425, 812ADSCrossRefGoogle Scholar
  13. Burns, V. 2014, A High Resolution Study of Circumgalactic O VI Absorbers at 2 < z < 4, University of Notre Dame Senior Honors ThesisGoogle Scholar
  14. Churchill, C. W., Mellon, R. R., Charlton, J. C., et al. 2000, ApJS, 130, 91ADSCrossRefGoogle Scholar
  15. Cooke, R., Pettini, M., Steidel, C. C., Rudie, G. C., & Nissen, P. E. 2011, MNRAS, 417, 1534ADSCrossRefGoogle Scholar
  16. Cooksey, K. L., Prochaska, J. X., Chen, H.-W., Mulchaey, J. S., & Weiner, B. J. 2008, ApJ, 676, 262ADSCrossRefGoogle Scholar
  17. Cooper, T. J., Simcoe, R. A., Cooksey, K. L., O’Meara, J. M., & Torrey, P. 2015, ApJ, 812, 58ADSCrossRefGoogle Scholar
  18. Crighton, N. H. M., Hennawi, J. F., & Prochaska, J. X. 2013, ApJL, 776, L18ADSCrossRefGoogle Scholar
  19. Crighton, N. H. M., Hennawi, J. F., Simcoe, R. A., et al. 2015, MNRAS, 446, 18ADSCrossRefGoogle Scholar
  20. Crighton, N. H. M., O’Meara, J. M., & Murphy, M. T. 2016, MNRAS, 457, L44ADSCrossRefGoogle Scholar
  21. Davé, R., Hernquist, L., Katz, N., & Weinberg, D. H. 1999, ApJ, 511, 521ADSCrossRefGoogle Scholar
  22. Dekel, A., & Birnboim, Y. 2006, MNRAS, 368, 2ADSCrossRefGoogle Scholar
  23. Ellison, S. L., Songaila, A., Schaye, J., & Pettini, M. 2000, AJ, 120, 1175ADSCrossRefGoogle Scholar
  24. Fabbian, D., Khomenko, E., Moreno-Insertis, F., & Nordlund, Å. 2010, ApJ, 724, 1536ADSCrossRefGoogle Scholar
  25. Faucher-Giguère, C.-A., Hopkins, P. F., Kereš, D., et al. 2015, MNRAS, 449, 987ADSCrossRefGoogle Scholar
  26. Faucher-Giguère, C.-A., Kereš, D., & Ma, C.-P. 2011, MNRAS, 417, 2982ADSCrossRefGoogle Scholar
  27. Ferland, G. J., Porter, R. L., van Hoof, P. A. M., et al. 2013, RMxAA, 49, 137ADSGoogle Scholar
  28. Ford, A. B., Davé, R., Oppenheimer, B. D., et al. 2014, MNRAS, 444, 1260ADSCrossRefGoogle Scholar
  29. Ford, A. B., Werk, J. K., Davé, R., et al. 2016, MNRAS, 459, 1745ADSCrossRefGoogle Scholar
  30. Fox, A. J., Lehner, N., Tumlinson, J., et al. 2013, ApJ, 778, 187ADSCrossRefGoogle Scholar
  31. Frebel, A., Johnson, J. L., & Bromm, V. 2007, MNRAS, 380, L40ADSCrossRefGoogle Scholar
  32. Fumagalli, M., Cantalupo, S., Dekel, A., et al. 2016a, MNRAS, 462, 1978Google Scholar
  33. Fumagalli, M., Fossati, M., Hau, G. K. T., et al. 2014a, MNRAS, 445, 4335Google Scholar
  34. Fumagalli, M., Hennawi, J. F., Prochaska, J. X., et al. 2014b, ApJ, 780, 74Google Scholar
  35. Fumagalli, M., O’Meara, J. M., & Prochaska, J. X. 2011a, Science, 334, 1245Google Scholar
  36. Fumagalli, M., O’Meara, J. M.. 2016b, MNRAS, 455, 4100Google Scholar
  37. Fumagalli, M., Prochaska, J. X., Kasen, D., et al. 2011b, MNRAS, 418, 1796Google Scholar
  38. Glidden A., Cooper T. J., Cooksey K. L., Simcoe R. A., O’Meara J. M., 2016, ApJ, 833, 270ADSCrossRefGoogle Scholar
  39. Lehner N., O’Meara J. M., Howk J. C., Prochaska J. X., Fumagalli M., 2016, ApJ, 833, 283ADSCrossRefGoogle Scholar
  40. Werk J. K., et al., 2016, ApJ, 833, 54ADSCrossRefGoogle Scholar
  41. Grimes, J. P., Heckman, T., Aloisi, A., et al. 2009, ApJS, 181, 272ADSCrossRefGoogle Scholar
  42. Haardt, F., & Madau, P. 1996, ApJ, 461, 20ADSCrossRefGoogle Scholar
  43. Haardt, F.. 2012, ApJ, 746, 125ADSCrossRefGoogle Scholar
  44. Hafen, Z., Faucher-Giguere, C.-A., Angles-Alcazar, D., et al. 2016, ApJ, submitted, arXiv:1608.05712Google Scholar
  45. Heckman, T. M., Lehnert, M. D., Strickland, D. K., & Armus, L. 2000, ApJS, 129, 493ADSCrossRefGoogle Scholar
  46. Hirschauer, A. S., Salzer, J. J., Skillman, E. D., et al. 2016, ApJ, 822, 108ADSCrossRefGoogle Scholar
  47. Howk, J. C., Ribaudo, J. S., Lehner, N., Prochaska, J. X., & Chen, H.-W. 2009, MNRAS, 396, 1875ADSCrossRefGoogle Scholar
  48. Jorgenson, R. A., Murphy, M. T., & Thompson, R. 2013, MNRAS, 435, 482ADSCrossRefGoogle Scholar
  49. Kacprzak, G. G., Churchill, C. W., & Nielsen, N. M. 2012a, ApJL, 760, L7Google Scholar
  50. Kacprzak, G. G., Churchill, C. W., Steidel, C. C., & Murphy, M. T. 2008, AJ, 135, 922ADSCrossRefGoogle Scholar
  51. Kacprzak, G. G., Churchill, C. W., Steidel, C. C., Spitler, L. R., & Holtzman, J. A. 2012b, MNRAS, 427, 3029Google Scholar
  52. Kacprzak, G. G., Martin, C. L., Bouché, N., et al. 2014, ApJL, 792, L12ADSCrossRefGoogle Scholar
  53. Kacprzak, G. G., van de Voort, F., Glazebrook, K., et al. 2016, ApJL, 826, L11ADSCrossRefGoogle Scholar
  54. Kereš, D., Katz, N., Weinberg, D. H., & Davé, R. 2005, MNRAS, 363, 2ADSCrossRefGoogle Scholar
  55. Kirkman, D., & Tytler, D. 1997, ApJL, 489, L123ADSCrossRefGoogle Scholar
  56. Kirkman, D.. 1999, ApJL, 512, L5ADSCrossRefGoogle Scholar
  57. Kniazev, A. Y., Grebel, E. K., Hao, L., et al. 2003, ApJL, 593, L73ADSCrossRefGoogle Scholar
  58. Kunth, D., & Östlin, G. 2000, A&A Rev., 10, 1ADSCrossRefGoogle Scholar
  59. Lanzetta, K. M., Bowen, D. V., Tytler, D., & Webb, J. K. 1995, ApJ, 442, 538ADSCrossRefGoogle Scholar
  60. Lehner, N., O’Meara, J. M., Fox, A. J., et al. 2014, ApJ, 788, 119ADSCrossRefGoogle Scholar
  61. Lehner, N., O’Meara, J. M., Howk, J. C., Prochaska, J. X., & Fumagalli, M. 2016, ApJ, in press, arXiv:1608.02588Google Scholar
  62. Lehner, N., Prochaska, J. X., Kobulnicky, H. A., et al. 2009, ApJ, 694, 734ADSCrossRefGoogle Scholar
  63. Lehner, N., Howk, J. C., Tripp, T. M., et al. 2013, ApJ, 770, 138ADSCrossRefGoogle Scholar
  64. Liang, C. J., & Chen, H.-W. 2014, MNRAS, 445, 2061ADSCrossRefGoogle Scholar
  65. Lopez, S., D’Odorico, V., Ellison, S. L., et al. 2016, A&A, arXiv:1607.08776Google Scholar
  66. Maller, A. H., & Bullock, J. S. 2004, MNRAS, 355, 694ADSCrossRefGoogle Scholar
  67. Marasco, A., Marinacci, F., & Fraternali, F. 2013, MNRAS, 433, 1634ADSCrossRefGoogle Scholar
  68. Martin, C. L., Shapley, A. E., Coil, A. L., et al. 2012, ApJ, 760, 127ADSCrossRefGoogle Scholar
  69. Muratov, A. L., & Gnedin, O. Y. 2010, ApJ, 718, 1266ADSCrossRefGoogle Scholar
  70. Muzahid, S., Kacprzak, G. G., Churchill, C. W., et al. 2015, ApJ, 811, 132ADSCrossRefGoogle Scholar
  71. Muzahid, S., Srianand, R., Bergeron, J., & Petitjean, P. 2012, MNRAS, 421, 446ADSGoogle Scholar
  72. O’Meara, J. M., Prochaska, J. X., Burles, S., et al. 2007, ApJ, 656, 666ADSCrossRefGoogle Scholar
  73. O’Meara, J. M., Lehner, N., Howk, J. C., et al. 2015, AJ, 150, 111ADSCrossRefGoogle Scholar
  74. Oppenheimer, B. D., Davé, R., Katz, N., Kollmeier, J. A., & Weinberg, D. H. 2012, MNRAS, 420, 829ADSCrossRefGoogle Scholar
  75. Oppenheimer, B. D., Davé, R., Kereš, D., et al. 2010, MNRAS, 406, 2325ADSCrossRefGoogle Scholar
  76. Peeples, M. S., Werk, J. K., Tumlinson, J., et al. 2014, ApJ, 786, 54ADSCrossRefGoogle Scholar
  77. Penprase, B. E., Prochaska, J. X., Sargent, W. L. W., Toro-Martinez, I., & Beeler, D. J. 2010, ApJ, 721, 1ADSCrossRefGoogle Scholar
  78. Peroux, C., Rahmani, H., Quiret, S., et al. 2017, MNRAS, 464, 2053ADSCrossRefGoogle Scholar
  79. Pettini, M., Shapley, A. E., Steidel, C. C., et al. 2001, ApJ, 554, 981ADSCrossRefGoogle Scholar
  80. Pettini, M., Zych, B. J., Steidel, C. C., & Chaffee, F. H. 2008, MNRAS, 385, 2011ADSCrossRefGoogle Scholar
  81. Prochaska, J. X. 1999, ApJL, 511, L71ADSCrossRefGoogle Scholar
  82. Prochaska, J. X., Gawiser, E., Wolfe, A. M., Castro, S., & Djorgovski, S. G. 2003, ApJL, 595, L9ADSCrossRefGoogle Scholar
  83. Prochaska, J. X., O’Meara, J. M., Fumagalli, M., Bernstein, R. A., & Burles, S. M. 2015, ApJS, 221, 2ADSCrossRefGoogle Scholar
  84. Prochaska, J. X., O’Meara, J. M., & Worseck, G. 2010, ApJ, 718, 392ADSCrossRefGoogle Scholar
  85. Quiret, S., Péroux, C., Zafar, T., et al. 2016, MNRAS, 458, 4074ADSCrossRefGoogle Scholar
  86. Rafelski, M., Wolfe, A. M., Prochaska, J. X., Neeleman, M., & Mendez, A. J. 2012, ApJ, 755, 89ADSCrossRefGoogle Scholar
  87. Ribaudo, J., Lehner, N., & Howk, J. C. 2011a, ApJ, 736, 42Google Scholar
  88. Ribaudo, J., Lehner, N., Howk, J. C., et al. 2011b, ApJ, 743, 207Google Scholar
  89. Rubin, K. H. R., Prochaska, J. X., Koo, D. C., & Phillips, A. C. 2012, ApJL, 747, L26ADSCrossRefGoogle Scholar
  90. Rubin, K. H. R., Prochaska, J. X., Koo, D. C., et al. 2014, ApJ, 794, 156ADSCrossRefGoogle Scholar
  91. Rudie, G. C., Steidel, C. C., & Pettini, M. 2012, ApJL, 757, L30ADSCrossRefGoogle Scholar
  92. Sargent, W. L. W., Steidel, C. C., & Boksenberg, A. 1989, ApJS, 69, 703ADSCrossRefGoogle Scholar
  93. Savage, B. D., Kim, T.-S., Wakker, B. P., et al. 2014, ApJS, 212, 8ADSCrossRefGoogle Scholar
  94. Schaye, J. 2001, ApJL, 562, L95ADSCrossRefGoogle Scholar
  95. Schaye, J., Aguirre, A., Kim, T.-S., et al. 2003, ApJ, 596, 768ADSCrossRefGoogle Scholar
  96. Shapley, A. E., Steidel, C. C., Pettini, M., & Adelberger, K. L. 2003, ApJ, 588, 65ADSCrossRefGoogle Scholar
  97. Shen, S., Madau, P., Aguirre, A., et al. 2012, ApJ, 760, 50ADSCrossRefGoogle Scholar
  98. Shen, S., Madau, P., Guedes, J., et al. 2013, ApJ, 765, 89ADSCrossRefGoogle Scholar
  99. Simcoe, R. A., Sargent, W. L. W., & Rauch, M. 2002, ApJ, 578, 737ADSCrossRefGoogle Scholar
  100. Simcoe, R. A., Sargent, W. L. W.. 2004, ApJ, 606, 92ADSCrossRefGoogle Scholar
  101. Skillman, E. D., Televich, R. J., Kennicutt, Jr., R. C., Garnett, D. R., & Terlevich, E. 1994, ApJ, 431, 172ADSCrossRefGoogle Scholar
  102. Som, D., Kulkarni, V. P., Meiring, J., et al. 2013, MNRAS, 435, 1469ADSCrossRefGoogle Scholar
  103. Som, D., Kulkarni, V. P., Meiring, J.. 2015, ApJ, 806, 25ADSCrossRefGoogle Scholar
  104. Steidel, C. C. 1990, ApJS, 74, 37ADSCrossRefGoogle Scholar
  105. Steidel, C. C., Erb, D. K., Shapley, A. E., et al. 2010, ApJ, 717, 289ADSCrossRefGoogle Scholar
  106. Steidel, C. C., Shapley, A. E., Pettini, M., et al. 2004, ApJ, 604, 534ADSCrossRefGoogle Scholar
  107. Stewart, K. R., Kaufmann, T., Bullock, J. S., et al. 2011, ApJ, 738, 39ADSCrossRefGoogle Scholar
  108. Stocke, J. T., Keeney, B. A., Danforth, C. W., et al. 2013, ApJ, 763, 148ADSCrossRefGoogle Scholar
  109. Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. 2004, ApJ, 613, 898ADSCrossRefGoogle Scholar
  110. Tripp, T. M., Sembach, K. R., Bowen, D. V., et al. 2008, ApJS, 177, 39ADSCrossRefGoogle Scholar
  111. Tripp, T. M., Meiring, J. D., Prochaska, J. X., et al. 2011, Science, 334, 952ADSCrossRefGoogle Scholar
  112. Tumlinson, J., Thom, C., Werk, J. K., et al. 2011, Science, 334, 948ADSCrossRefGoogle Scholar
  113. Tumlinson, J., Thom, C., Werk, J. K.. 2013, ApJ, 777, 59ADSCrossRefGoogle Scholar
  114. Tytler, D. 1982, Nature, 298, 427ADSCrossRefGoogle Scholar
  115. van de Voort, F., & Schaye, J. 2012, MNRAS, 423, 2991ADSCrossRefGoogle Scholar
  116. van de Voort, F., Schaye, J., Altay, G., & Theuns, T. 2012, MNRAS, 421, 2809ADSCrossRefGoogle Scholar
  117. Voit, G. M., Donahue, M., Bryan, G. L., & McDonald, M. 2015, Nature, 519, 203ADSCrossRefGoogle Scholar
  118. Weiner, B. J., Coil, A. L., Prochaska, J. X., et al. 2009, ApJ, 692, 187ADSCrossRefGoogle Scholar
  119. Werk, J. K., Prochaska, J. X., Thom, C., et al. 2012, ApJS, 198, 3ADSCrossRefGoogle Scholar
  120. Werk, J. K., Prochaska, J. X., Thom, C.. 2013, ApJS, 204, 17ADSCrossRefGoogle Scholar
  121. Werk, J. K., Prochaska, J. X., Tumlinson, J., et al. 2014, ApJ, 792, 8ADSCrossRefGoogle Scholar
  122. Werk, J. K., Prochaska, J. X., Cantalupo, S., et al. 2016, ApJ, in press, arXiv:1609.00012Google Scholar
  123. Wotta, C. B., Lehner, N., Howk, J. C., O’Meara, J. M., & Prochaska, J. X. 2016, ApJ, 831, 95ADSCrossRefGoogle Scholar
  124. Zonak, S. G., Charlton, J. C., Ding, J., & Churchill, C. W. 2004, ApJ, 606, 196ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center for Astrophysics, Department of PhysicsUniversity of Notre DameNotre DameUSA

Personalised recommendations