Advertisement

Gas Accretion Traced in Absorption in Galaxy Spectroscopy

  • Kate H. R. RubinEmail author
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 430)

Abstract

The positive velocity shift of absorption transitions tracing diffuse material observed in a galaxy spectrum is an unambiguous signature of gas flow toward the host system. Spectroscopy probing, e.g., Na I resonance lines in the rest-frame optical or Mg II and Fe II in the near-ultraviolet is in principle sensitive to the infall of cool material at temperatures T ∼ 100–10,000 K anywhere along the line of sight to a galaxy’s stellar component. However, secure detections of this redshifted absorption signature have proved challenging to obtain due to the ubiquity of cool gas outflows giving rise to blueshifted absorption along the same sightlines. In this chapter, we review the bona fide detections of this phenomenon. Analysis of Na I line profiles has revealed numerous instances of redshifted absorption observed toward early-type and/or AGN-host galaxies, while spectroscopy of Mg II and Fe II has provided evidence for ongoing gas accretion onto > 5% of luminous, star-forming galaxies at z ∼ 0. 5–1. We then discuss the potentially ground-breaking benefits of future efforts to improve the spectral resolution of such studies, and to leverage spatially resolved spectroscopy for new constraints on inflowing gas morphology.

Keywords

Column Density Stellar Mass Star Formation Rate Host Galaxy Galaxy Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ajiki, M., Taniguchi, Y., Murayama, T. et al. 2002, ApJ, 576, 25ADSCrossRefGoogle Scholar
  2. Allen, J. T., Hewett, P. C., Maddox, N. et al. 2011, MNRAS, 410, 860ADSCrossRefGoogle Scholar
  3. Barro, G., Pérez-González, P. G., Gallego, J. et al. 2011, ApJS, 193, 13ADSCrossRefGoogle Scholar
  4. Barvainis, R. 1987, ApJ, 320, 537ADSCrossRefGoogle Scholar
  5. Bergeron, J. 1986, A&A, 155, L8ADSGoogle Scholar
  6. Bundy, K., Bershady, M. A., Law, D. R. et al. 2015, ApJ, 798, 7ADSCrossRefGoogle Scholar
  7. Chen, H.-W., Helsby, J. E., Gauthier J.-R., et al. 2010, ApJ, 714, 1521ADSCrossRefGoogle Scholar
  8. Chen, Y.-M., Tremonti, C. A., Heckman, T. M. et al. 2010, AJ, 140, 445ADSCrossRefGoogle Scholar
  9. Coil, A., Weiner, B. J., Holz, D. E., et al. 2011, ApJ,, 743, 23CrossRefGoogle Scholar
  10. Crenshaw, D. M., Kraemer, S. B., George, I. M. 2003, ARA&A, 41, 117ADSCrossRefGoogle Scholar
  11. Davé, R., Finlator, K., Oppenheimer, B. D. 2012, MNRAS, 421, 98ADSGoogle Scholar
  12. Davis, M., Faber, S. M., Newman, J. et al. 2003, SPIE, 4834, 161ADSGoogle Scholar
  13. Davis, M., Guhathakurta, P., Konidaris, N. P., et al. 2007, ApJ, 660, 1ADSCrossRefGoogle Scholar
  14. Davis, T. A., Alatalo, K., Sarzi, M., et al. 2011, MNRAS, 417, 882ADSCrossRefGoogle Scholar
  15. Deller, A. T., Middelberg, E. 2014, AJ, 147, 14ADSCrossRefGoogle Scholar
  16. Dessauges-Zavadsky, M., D’Odorico, S., Schaerer, D. et al. 2010, A&A, 510, 26ADSCrossRefGoogle Scholar
  17. Du, X., Shapley, A. E., Martin, C. L., Coil, A. L. 2016, arXiv, 1604.03945Google Scholar
  18. Ellison, S. L., Prochaska, J. X., Hennawi, J.et al. 2010, MNRAS, 406, 1435ADSGoogle Scholar
  19. Fathivavsari, H., Petitjean, P., Noterdaeme, P. et al. 2016, MNRAS, 461, 1816ADSCrossRefGoogle Scholar
  20. France, K., Fleming, B., Hoadley, K. 2016, J. Astron.Telesc. Instrum. Syst., 2(4), 041203Google Scholar
  21. Goerdt, T., Ceverino, D. 2015, MNRAS, 450, 3359ADSCrossRefGoogle Scholar
  22. Hall, P. B., Anderson, S. F., Strauss, M. A. et al. 2002, ApJ, 141, 267CrossRefGoogle Scholar
  23. Hall, P. B., Brandt, W. N., Petitjean, P. et al. 2013, MNRAS, 434, 222ADSCrossRefGoogle Scholar
  24. Heckman, T. M., Lehnert, M. D., Strickland, D. K., Armus, L. 2000, ApJS, 129, 493ADSCrossRefGoogle Scholar
  25. Kacprzak, G. G., Churchill, C. W., Steidel, C. C. et al. 2007, ApJ, 662, 909ADSCrossRefGoogle Scholar
  26. Kornei, K. A., Shapley, A. E., Martin, C. L. et al. 2012, ApJ, 758, 135ADSCrossRefGoogle Scholar
  27. Krug, H. B., Rupke, D. S. N., Veilleux, S. 2010, ApJ, 708, 1145ADSCrossRefGoogle Scholar
  28. Langer, W. D., Pineda, J. L., Velusamy, T. 2014, Astronomy & Astrophysics, 564, 101ADSCrossRefGoogle Scholar
  29. Le Floc’h, E., Willmer, C. N. A., Noeske, K. et al. 2007, ApJ, 660, 65CrossRefGoogle Scholar
  30. Lehner, N., Howk, J. C. 2011, Science, 334, 955ADSCrossRefGoogle Scholar
  31. Lehner, N., Howk, J C., Tripp, T. M., et al. 2013, ApJ, 770, 138ADSCrossRefGoogle Scholar
  32. Li, J., Ostriker, J., Sunyaev, R. 2013, ApJ, 767, 105ADSCrossRefGoogle Scholar
  33. Martin, C. L. 2005, ApJ, 621, 227ADSCrossRefGoogle Scholar
  34. Martin, A. M., Papastergis, E., Giovanelli, R. et al. 2010, ApJ, 723, 1359ADSCrossRefGoogle Scholar
  35. Martin, C. L., Shapley, A. E., Coil, A. L. et al. 2012, ApJ, 760, 127ADSCrossRefGoogle Scholar
  36. Nelson, D., Genel, S., Vogelsberger, M. et al. 2015, MNRAS, 448, 59ADSCrossRefGoogle Scholar
  37. Oppenheimer, B. D., Dave, R., Kereš, D. et al. 2010, MNRAS, 406, 2325ADSCrossRefGoogle Scholar
  38. Pettini, M., Rix, S. A., Steidel, C. C., et al. 2002, ApJ, 569, 742ADSCrossRefGoogle Scholar
  39. Prochaska, J. X., Weiner, B. J., Chen, H.-W., et al. 2011, ApJ, 740, 91ADSCrossRefGoogle Scholar
  40. Quider, A. M., Pettini, M., Shapley, A. E., Steidel, C. C. 2009, MNRAS, 398, 1263ADSCrossRefGoogle Scholar
  41. Quider, A. M., Shapley, A. E., Pettini, M. et al. 2010, MNRAS, 402, 1467ADSCrossRefGoogle Scholar
  42. Rupke, D. S., Veilleux, S., Sanders, D. B. 2005b, ApJS, 160, 115Google Scholar
  43. Rupke, D. S., Veilleux, S., Sanders, D. B. 2005a, ApJ, 632, 751Google Scholar
  44. Rubin, K. H. R., Weiner, B. J., Koo, D. C., et al. 2010, ApJ, 719, 1503ADSCrossRefGoogle Scholar
  45. Rubin, K. H. R., Prochaska, J. X., Koo, D. C., Phillips, A. C., 2012, ApJL, 747, 26ADSCrossRefGoogle Scholar
  46. Rubin, K. H. R., Prochaska, J. X., Koo, D. C., et al. 2014, ApJ, 794, 156ADSCrossRefGoogle Scholar
  47. Sarzi, M., Kaviraj, S., Nedelchev, B., et al. 2016, MNRAS, 456, 25ADSCrossRefGoogle Scholar
  48. Sato, T., Martin, C. L., Noeske, K. G., et al. 2009, ApJ, 696, 214ADSCrossRefGoogle Scholar
  49. Shen, Y., Brandt, W. N., Denney, K. D., et al. 2016, arXiv, 1602.03894Google Scholar
  50. Shi, X., Jiang, P., Wang, H., et al. 2016, arXiv, 1608.05487Google Scholar
  51. Shopbell, P. L. & Bland-Hawthorn, J. 1998, ApJ, 493, 129ADSCrossRefGoogle Scholar
  52. Steidel, C. C., Dickinson, M., Persson, S. E. 1994, ApJ, 437, L75ADSCrossRefGoogle Scholar
  53. Steidel, C. C., Erb, D. K., Shapley, A. E., et al. 2010, ApJ, 717, 289ADSCrossRefGoogle Scholar
  54. Stone, M., Veilleux, S., Melendez, M. 2016, arXiv, 1605.06512Google Scholar
  55. Thirty Meter Telescope Detailed Science Case 2015, ed. Skidmore, W., arXiv:1505.01195Google Scholar
  56. Tumlinson, J., Thom, C., Werk, J. K. et al. 2011, Science, 334, 948ADSCrossRefGoogle Scholar
  57. van Gorkom, J. H., Knapp, G. R., Ekers, R. D., et al. 1989, AJ, 97, 708ADSCrossRefGoogle Scholar
  58. Vogelsberger, M., Genel, S., Sijacki, D., et al. 2013, MNRAS, 436, 3031ADSCrossRefGoogle Scholar
  59. Walter, F., Weiss, A., Scoville, N. 2002, ApJ, 580, 21ADSCrossRefGoogle Scholar
  60. Weiner, B. J., Coil, A. L., Prochaska, J. X., et al. 2009, ApJ, 692, 187ADSCrossRefGoogle Scholar
  61. Werk, J. K, Prochaska, J. X., Tumlinson, J., et al. 2014, ApJ, 792, 8ADSCrossRefGoogle Scholar
  62. Westmoquette, M. S., Smith, L. J., Gallagher, J. S., Walter, F. 2013, MNRAS, 428, 1743ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of AstronomySan Diego State UniversitySan DiegoUSA

Personalised recommendations