Advertisement

Gas Accretion and Star-Formation Rates with IFUs and Background Quasars

  • Nicolas F. BouchéEmail author
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 430)

Abstract

Star forming galaxies (SFGs) are forming stars at a regular pace, forming the so-called main sequence (MS). However, all studies of their gas content show that their gas reservoir ought to be depleted in 0.5–2 Gyr. Thus, SFGs are thought to be fed by the continuous accretion of intergalactic gas in order to sustain their star-formation activity. However, direct observational evidence for this accretion phenomenon has been elusive. Theoretically, the accreted gas coming from the intergalactic medium is expected to orbit about the halo, delivering not just fuel for star-formation but also angular momentum to the galaxy. This accreting material is thus expected to form a gaseous structure that should be co-rotating with the host once at r < 0. 3 Rvir or r < 10–30 kpc. Because of the rough alignment between the star-forming disk and this extended gaseous structure, the accreting material can be most easily detected with the combination of background quasars and integral field units (IFUs). In this chapter, accretion studies using this technique are reviewed.

Keywords

Accretion Rate Column Density Halo Mass Gaseous Structure Virial Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bacon, R., Accardo, M., Adjali, L., et al., SPIE, 7735, 8Google Scholar
  2. Bauermeister, A., Blitz, L., & Ma, C. 2010, ApJ, 717, 323ADSCrossRefGoogle Scholar
  3. Bigiel, F., Leroy, A., Seibert, M., et al. 2010, ApJ, 720, L31ADSCrossRefGoogle Scholar
  4. Birnboim, Y., & Dekel, A. 2003, MNRAS, 345, 349ADSCrossRefGoogle Scholar
  5. Birnboim, Y., Dekel, A., & Neistein, E. 2007 MNRAS, 380, 339ADSCrossRefGoogle Scholar
  6. Bonnet, H., Conzelmann, R., Delabre, B., et al. 2004, SPIE, 5490, 130ADSGoogle Scholar
  7. Bordoloi, R., Lilly, S.J., Knobel, C., et al. 2011, ApJ, 743, 10ADSCrossRefGoogle Scholar
  8. Bouché, N., Dekel, A., Genzel, R., et al. 2010, ApJ, 718, 1001ADSCrossRefGoogle Scholar
  9. Bouché, N., Finley, H., Schroetter, I., et al. 2016, ApJ, 820, 121ADSCrossRefGoogle Scholar
  10. Bouché, N., Hohensee, W., Vargas, R., et al. 2012, MNRAS, 426, 801ADSCrossRefGoogle Scholar
  11. Bouché, N., Murphy, M.T., Kacprzak, G.G., et al. 2013, Science, 341, 50ADSCrossRefGoogle Scholar
  12. Bouché, N., Murphy, M.T., Péroux, C., et al. 2012, MNRAS, 419, 2ADSCrossRefGoogle Scholar
  13. Bouché, N., Murphy, M.T., Péroux, C., et al. 2007, ApJ, 669, L5ADSCrossRefGoogle Scholar
  14. Brinchmann, J., Charlot, S., White, S.D.M., et al. 2004, MNRAS, 351, 1151ADSCrossRefGoogle Scholar
  15. Bullock, J.S., Dekel, A., Kolatt, T.S., et al. 2001, ApJ, 555, 240ADSCrossRefGoogle Scholar
  16. Chen, Y., Tremonti, C.A., Heckman, T.M., et al. 2010, AJ, 140, 445ADSCrossRefGoogle Scholar
  17. Crighton, N.H.M., Murphy, M.T., Prochaska, J.X., et al. 2015, MNRAS, 452, 217ADSCrossRefGoogle Scholar
  18. Daddi, E., Dickinson, M., Morrison, G., et al. 2007, ApJ, 670, 156ADSCrossRefGoogle Scholar
  19. Danovich, M., Dekel, A., Hahn, O., Ceverino, D., Primack, J. 2015, MNRAS, 449, 2087ADSCrossRefGoogle Scholar
  20. Danovich, M., Dekel, A., Hahn, O., Teyssier, R. 2012, MNRAS, 442, 1732ADSCrossRefGoogle Scholar
  21. Davé, R., Finlator, K., Oppenheimer, B.D.: 2012, MNRAS, 421, 98ADSGoogle Scholar
  22. Dekel, A., Birnboim, Y. 2006, MNRAS, 368, 2ADSCrossRefGoogle Scholar
  23. Dekel, A., Birnboim, Y., Engel, G., et al. 2009, Nature, 457, 451ADSCrossRefGoogle Scholar
  24. Dekel, A., & Mandelker, N. 2014, MNRAS, 444, 2071ADSCrossRefGoogle Scholar
  25. Dekel, A., Zolotov, A., Tweed, D., et al. 2013, MNRAS, 435, 999ADSCrossRefGoogle Scholar
  26. Elbaz, D., Daddi, E., Le Borgne, D., et al. 2007, A&A, 468, 33ADSCrossRefGoogle Scholar
  27. Faucher-Giguère, C.A., Kereš, D., & Ma, C.P. 2011, MNRAS, 417, 2982ADSCrossRefGoogle Scholar
  28. Feldmann, R. 2013, MNRAS, 433, 1910ADSCrossRefGoogle Scholar
  29. Feldmann, R. 2015, MNRAS, 449, 3274ADSCrossRefGoogle Scholar
  30. Forbes, J.C., Krumholz, M.R., Burkert, A., Dekel, A. 2014, MNRAS, 438, 1552ADSCrossRefGoogle Scholar
  31. Förster Schreiber, N.M., Genzel, R., Bouché, N., et al. 2009, ApJ, 706, 1364ADSCrossRefGoogle Scholar
  32. Förster Schreiber, N.M., Genzel, R., Lehnert, M.D., et al. 2006, ApJ, 645, 1062ADSCrossRefGoogle Scholar
  33. Freundlich, J., Combes, F., Tacconi, L. J., et al. 2013, A&A, 553, A130ADSCrossRefGoogle Scholar
  34. Fumagalli, M., Prochaska, J.X., Kasen, D., et al. 2011, MNRAS, 418, 1796ADSCrossRefGoogle Scholar
  35. Genel, S., Genzel, R., Bouché, N., et al. 2008, ApJ, 688, 789ADSCrossRefGoogle Scholar
  36. Genzel, R., Tacconi, L.J., Gracia-Carpio, J., et al. 2010, MNRAS, 407, 2091ADSCrossRefGoogle Scholar
  37. Goerdt, T., Dekel, A., Sternberg, A., Gnat, O., & Ceverino, D. 2012, MNRAS, 424, 2292ADSCrossRefGoogle Scholar
  38. Huchtmeier, W. K., Bohnenstengel, H. D. 1981, A&A, 100, 72ADSGoogle Scholar
  39. Kacprzak, G.G., Churchill, C.W., Nielsen, N.M.: et al. 2012, ApJ, 760, L7Google Scholar
  40. Kereš, D., Katz, N., Weinberg, D.H., & Davé, R. 2005, MNRAS, 363, 2ADSCrossRefGoogle Scholar
  41. Kimm, T., Devriendt, J., Slyz, A., et al. 2011, preprint, arXiv:1106.0538Google Scholar
  42. Krumholz, M.R., Dekel, A., & McKee, C.F. 2012, ApJ, 745,Google Scholar
  43. Lanzetta, K.M., Bowen, D.: 1990, ApJ, 357, 321ADSCrossRefGoogle Scholar
  44. Leroy, A.K., Walter, F., Brinks, E., et al. 2008, AJ, 136, 2782ADSCrossRefGoogle Scholar
  45. Lilly, S.J., Carollo, C.M., Pipino, A., Renzini, A., & Peng, Y. 2013, ApJ, 772, 119ADSCrossRefGoogle Scholar
  46. Lopez, S., Reimers, D., D’Odorico, S., & Prochaska, J.X. 2002, A&A, 385, 778ADSCrossRefGoogle Scholar
  47. Lynden-Bell, D. 1975, Vistas in Astronomy, 19, 299ADSCrossRefGoogle Scholar
  48. McBride, J., Fakhouri, O., & Ma, C. 2009, MNRAS, 398, 1858ADSCrossRefGoogle Scholar
  49. Mo, H.J., Mao, S., & White, S.D.M. 1998, MNRAS, 295, 319ADSCrossRefGoogle Scholar
  50. Noeske, K.G., Faber, S.M., Weiner, B.J., et al. 2007, ApJ, 660, L47ADSCrossRefGoogle Scholar
  51. Noterdaeme, P., Petitjean, P., Carithers, W.C., 2012, A&A, 547, L1ADSCrossRefGoogle Scholar
  52. Pagel, B.E.J., & Patchett, B.E. 1975, MNRAS, 172, 13ADSCrossRefGoogle Scholar
  53. Peng, Y.j., Lilly, S.J., Kovač, K., 2010, ApJ, 721, 193ADSCrossRefGoogle Scholar
  54. Peng, Y.J., & Maiolino, R. 2014, MNRAS, 443, 3643ADSCrossRefGoogle Scholar
  55. Péroux, C., McMahon, R.G., Storrie-Lombardi, L.J., & Irwin, M.J. 2003, MNRAS, 346, 1103ADSCrossRefGoogle Scholar
  56. Péroux, C., Bouché, N., Kulkarni, V.P., & York, D.G. 2013, MNRAS, 436, 2650ADSCrossRefGoogle Scholar
  57. Péroux, C., Bouché, N., Kulkarni, V.P., York, D.G., & Vladilo, G. 2011, MNRAS, 410, 2237ADSCrossRefGoogle Scholar
  58. Péroux, C., Bouché, N., Kulkarni, V.P., York, D.G., & Vladilo, G. 2012, MNRAS, 419, 3060ADSCrossRefGoogle Scholar
  59. Péroux, C., Kulkarni, V.P., & York, D.G. 2014, MNRAS, 437, 3144ADSCrossRefGoogle Scholar
  60. Péroux, C., Quiret, S., Rahmani, H., et al. 2016, MNRAS, 457, 903ADSCrossRefGoogle Scholar
  61. Peroux, C., Rahmani, H., Quiret, S., et al. 2017, MNRAS, 464, 2053ADSCrossRefGoogle Scholar
  62. Pichon, C., Pogosyan, D., Kimm, T., et al. 2011, MNRAS, 418, 2493ADSCrossRefGoogle Scholar
  63. Putman, M.E., Peek, J.E.G., Muratov, A., 2009, ApJ, 703, 1486ADSCrossRefGoogle Scholar
  64. Saintonge, A., Catinella, B., Cortese, L., et al. 2016, MNRAS, 462, 1749ADSCrossRefGoogle Scholar
  65. Saintonge, A., Lutz, D., Genzel, R., et al. 2013, ApJ, 778, 2ADSCrossRefGoogle Scholar
  66. Schmidt, M. 1963, ApJ, 137, 758ADSCrossRefGoogle Scholar
  67. Schroetter, I., Bouché, N., Péroux, C., et al. 2015, ApJ, 804, 83ADSCrossRefGoogle Scholar
  68. Schroetter, I., Bouché, N., Wendt, M. 2016, ApJ, 2016 APJ, 833, 39Google Scholar
  69. Shen, S., Madau, P., Guedes, J., et al. 2013, ApJ, 765, 89ADSCrossRefGoogle Scholar
  70. Steidel, C.C., in QSO Absorption Lines, ESO Astrophysics Symposia, p. 139. Springer-Verlag, Berlin, Germany (1995)Google Scholar
  71. Stewart, K., Maller, A., Oñorbe, J., et al. 2016, ApJ, submitted, arXiv:1606.08524Google Scholar
  72. Stewart, K.R., Brooks, A.M., Bullock, J.S., et al. 2013, ApJ, 769, 74ADSCrossRefGoogle Scholar
  73. Stewart, K.R., Kaufmann, T., Bullock, J.S., et al. 2011a, ApJ, 735, L1Google Scholar
  74. Stewart, K.R., Kaufmann, T., Bullock, J.S., et al. 2011b, ApJ, 738, 39Google Scholar
  75. Tacconi, L.J., Neri, R., Genzel, R., et al. 2013, ApJ, 768, 74ADSCrossRefGoogle Scholar
  76. Tomczak, A.R., Quadri, R.F., Tran, K.V.H., et al. 2016, ApJ, 817, 118ADSCrossRefGoogle Scholar
  77. van den Bergh, S. 1962, AJ, 67, 486ADSCrossRefGoogle Scholar
  78. Whitaker, K.E., van Dokkum, P.G., Brammer, G., Franx, M. 2012, ApJ, 754, L29ADSCrossRefGoogle Scholar
  79. Whitaker, K.E., Franx, M., Leja, J., et al. 2014, ApJ, 795, 104ADSCrossRefGoogle Scholar
  80. White, S.D.M. & Frenk, C.S. 1991, ApJ, 379, 52ADSCrossRefGoogle Scholar
  81. Yun, M.S., Ho, P.T.P., & Lo, K.Y. 1994, Nature, 372, 530ADSCrossRefGoogle Scholar
  82. Zafar, T., Péroux, C., Popping, A., et al. 2013, A&A, 556, A141ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.IRAPToulouseFrance

Personalised recommendations