Advertisement

The Effect of Galactic Feedback on Gas Accretion and Wind Recycling

  • Freeke van de VoortEmail author
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 430)

Abstract

In the absence of galactic winds, the rate at which gas accretes onto galaxies is determined by the gravitational potential and by radiative cooling. However, outflows driven by supernovae and active galactic nuclei not only eject gas from galaxies, but also prevent gas from accreting in the first place. Furthermore, gas previously ejected from a galaxy can re-accrete onto (the same or a different) galaxy. Because this gas has a high metallicity, its cooling rate is relatively high, which will increase its chances to re-accrete. This complex interplay between gas inflows and outflows is discussed in this chapter. Wind recycling is found to be an important process that fuels galaxies at late times and the recycled gas has different properties than gas accreting for the first time. Quantitative conclusions, however, vary between studies, because the amount of wind recycling is dependent on the details of the feedback model. We discuss these differences, known caveats, and ways to make progress in understanding how galaxies are fed at low redshift.

Keywords

Accretion Rate Stellar Mass Star Formation Rate Hydrodynamical Simulation Central Galaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson M. E., Gaspari M., White S. D. M., Wang W., Dai X., 2015, MNRAS, 449, 3806ADSCrossRefGoogle Scholar
  2. Anglés-Alcázar D., Faucher-Giguère C.-A., Kereš D., et al. 2016, preprint, arXiv:1610.08523Google Scholar
  3. Bahé Y. M., McCarthy I. G., Balogh M. L., Font A. S., 2013, MNRAS, 430, 3017ADSCrossRefGoogle Scholar
  4. Bahé Y. M., Schaye J., Crain R. A., et al. 2017, MNRAS, 464, 508ADSCrossRefGoogle Scholar
  5. Balogh M. L., Navarro J. F., Morris S. L., 2000, ApJ, 540, 113ADSCrossRefGoogle Scholar
  6. Bertone S., De Lucia G., Thomas P. A., 2007, MNRAS, 379, 1143ADSCrossRefGoogle Scholar
  7. Birnboim Y., Dekel A., 2003, MNRAS, 345, 349ADSCrossRefGoogle Scholar
  8. Blanton M. R., Berlind A. A., 2007, ApJ, 664, 791ADSCrossRefGoogle Scholar
  9. Booth C. M., Agertz O., Kravtsov A. V., Gnedin N. Y., 2013, ApJL, 777, L16ADSCrossRefGoogle Scholar
  10. Bouché N., Dekel, A., Genzel, R., et al., 2010, ApJ, 718, 1001ADSCrossRefGoogle Scholar
  11. Brook C. B., Stinson G., Gibson B. K., et al. 2012, MNRAS, 419, 771ADSCrossRefGoogle Scholar
  12. Brüggen M., Scannapieco E., 2016, ApJ, 822, 31ADSCrossRefGoogle Scholar
  13. Bryan G. L., Norman M. L., 1998, ApJ, 495, 80ADSCrossRefGoogle Scholar
  14. Chan T. K., Kereš D., Oñorbe J., et al. 2015, MNRAS, 454, 2981ADSCrossRefGoogle Scholar
  15. Christensen C. R., Davé R., Governato F., et al. 2016, ApJ, 824, 57ADSCrossRefGoogle Scholar
  16. Crain R. A., Theuns T., Dalla Vecchia C., et al. 2009, MNRAS, 399, 1773ADSCrossRefGoogle Scholar
  17. Crain R. A., McCarthy I. G., Frenk C. S., Theuns T., Schaye J., 2010, MNRAS, 407, 1403ADSCrossRefGoogle Scholar
  18. Davé R., Cen R., Ostriker J. P., et al. 2001, ApJ, 552, 473ADSCrossRefGoogle Scholar
  19. Davé R., Oppenheimer B. D., Finlator K., 2011, MNRAS, 415, 11ADSCrossRefGoogle Scholar
  20. Davé R., Finlator K., Oppenheimer B. D., 2012, MNRAS, 421, 98ADSGoogle Scholar
  21. De Lucia G., Kauffmann G., White S. D. M., 2004, MNRAS, 349, 1101ADSCrossRefGoogle Scholar
  22. Dekel A., Birnboim Y., 2006, MNRAS, 368, 2ADSCrossRefGoogle Scholar
  23. Dekel A., Mandelker N., 2014, MNRAS, 444, 2071ADSCrossRefGoogle Scholar
  24. El-Badry K., Wetzel A., Geha M., et al. 2016, ApJ, 820, 131ADSCrossRefGoogle Scholar
  25. Faucher-Giguère C.-A., Kereš D., Ma C.-P., 2011, MNRAS, 417, 2982ADSCrossRefGoogle Scholar
  26. Fielding D., Quataert E., McCourt M., Thompson T. A., 2016, preprint, arXiv:1606.06734Google Scholar
  27. Finlator K., Davé R., 2008, MNRAS, 385, 2181ADSCrossRefGoogle Scholar
  28. Ford A. B., Davé R., Oppenheimer B. D., et al. 2014, MNRAS, 444, 1260ADSCrossRefGoogle Scholar
  29. Gonzalez A. H., Sivanandam S., Zabludoff A. I., Zaritsky D., 2013, ApJ, 778, 14ADSCrossRefGoogle Scholar
  30. Haardt F., Madau P., 2001, in Neumann D. M., Tran J. T. V., eds, Clusters of Galaxies and the High Redshift Universe Observed in X-rays Google Scholar
  31. Hafen Z., Faucher-Giguere C.-A., Angles-Alcazar D., et al. 2016, preprint, arXiv:1608.05712Google Scholar
  32. Hayes M., Melinder J., Östlin G., et al. 2016, ApJ, 828, 49ADSGoogle Scholar
  33. Henriques B. M. B., White S. D. M., Thomas P. A., et al. 2013, MNRAS, 431, 3373ADSCrossRefGoogle Scholar
  34. Hopkins A. M., Beacom J. F., 2006, ApJ, 651, 142ADSCrossRefGoogle Scholar
  35. Kacprzak G. G., Churchill C. W., Nielsen N. M., 2012, ApJL, 760, L7ADSCrossRefGoogle Scholar
  36. Kacprzak G. G., van de Voort F., Glazebrook K., et al. 2016, ApJL, 826, L11ADSCrossRefGoogle Scholar
  37. Kereš D., Katz N., Weinberg D. H., Davé R., 2005, MNRAS, 363, 2ADSCrossRefGoogle Scholar
  38. Kereš D., Katz N., Davé R., Fardal M., Weinberg D. H., 2009, MNRAS, 396, 2332ADSCrossRefGoogle Scholar
  39. Lagos C. d. P., Theuns T., Schaye J., et al. 2016, MNRAS, 459, 2632Google Scholar
  40. Larson R. B., Tinsley B. M., Caldwell C. N., 1980, ApJ, 237, 692ADSCrossRefGoogle Scholar
  41. Le Brun A. M. C., McCarthy I. G., Schaye J., Ponman T. J., 2014, MNRAS, 441, 1270ADSCrossRefGoogle Scholar
  42. Lee N., Sanders D. B., Casey C. M., et al. 2015, ApJ, 801, 80ADSCrossRefGoogle Scholar
  43. Lilly S. J., Carollo C. M., Pipino A., Renzini A., Peng Y., 2013, ApJ, 772, 119ADSCrossRefGoogle Scholar
  44. Lin Y.-T., Stanford S. A., Eisenhardt P. R. M., et al. 2012, ApJL, 745, L3ADSCrossRefGoogle Scholar
  45. Mannucci F., Cresci G., Maiolino R., Marconi A., Gnerucci A., 2010, MNRAS, 408, 2115ADSCrossRefGoogle Scholar
  46. Martizzi D., Fielding D., Faucher-Giguère C.-A., Quataert E., 2016, MNRAS, 459, 2311ADSCrossRefGoogle Scholar
  47. McCarthy I. G., Schaye J., Bird S., Le Brun A. M. C., 2017, MNRAS, 465, 2936ADSCrossRefGoogle Scholar
  48. McCourt M., O’Leary R. M., Madigan A.-M., Quataert E., 2015, MNRAS, 449, 2ADSCrossRefGoogle Scholar
  49. Mitra S., Davé R., Finlator K., 2015, MNRAS, 452, 1184ADSCrossRefGoogle Scholar
  50. Mitra S., Davé R., Simha V., Finlator K., 2017, MNRAS, 464, 2766ADSCrossRefGoogle Scholar
  51. Muratov A. L., Kereš D., Faucher-Giguère C.-A., et al. 2015, MNRAS, 454, 2691ADSCrossRefGoogle Scholar
  52. Noeske K. G., Weiner B. J., Faber S. M., et al. 2007, ApJL, 660, L43ADSCrossRefGoogle Scholar
  53. Oppenheimer B. D., Davé R., 2008, MNRAS, 387, 577ADSCrossRefGoogle Scholar
  54. Oppenheimer B. D., Davé R., Kereš D., et al. 2010, MNRAS, 406, 2325ADSCrossRefGoogle Scholar
  55. Padmanabhan T. 2002, Theoretical Astrophysics, Volume III: Galaxies and Cosmology, pp. 638, Cambridge, UK: Cambridge University PressCrossRefGoogle Scholar
  56. Peng Y., Maiolino R., Cochrane R., 2015, Nature, 521, 192ADSCrossRefGoogle Scholar
  57. Péroux C., Dessauges-Zavadsky M., D’Odorico S., Kim T.S., McMahon R. G., 2005, MNRAS, 363, 479ADSCrossRefGoogle Scholar
  58. Pontzen A., Governato F., 2012, MNRAS, 421, 3464ADSCrossRefGoogle Scholar
  59. Rasmussen J., Mulchaey J. S., Bai L., et al. 2012, ApJ, 757, 122ADSCrossRefGoogle Scholar
  60. Rees M. J., Ostriker J. P., 1977, MNRAS, 179, 541ADSCrossRefGoogle Scholar
  61. Salem M., Bryan G. L., Hummels C., 2014, ApJL, 797, L18ADSCrossRefGoogle Scholar
  62. Schaye J., Dalla Vecchia C., Booth C. M., et al., 2010, MNRAS, 402, 1536ADSCrossRefGoogle Scholar
  63. Schaye J., Crain R. A., Bower R. G., et al. 2015, MNRAS, 446, 521ADSCrossRefGoogle Scholar
  64. Segers M. C., Crain R. A., Schaye J., et al. 2016, MNRAS, 456, 1235ADSCrossRefGoogle Scholar
  65. Simha V., Weinberg D. H., Davé R., et al. 2009, MNRAS, 399, 650ADSCrossRefGoogle Scholar
  66. Steidel C. C., Bogosavljević M., Shapley A. E., et al. 2011, ApJ, 736, 160ADSCrossRefGoogle Scholar
  67. Suarez T., Pontzen A., Peiris H. V., Slyz A., Devriendt J., 2016, MNRAS, 462, 994ADSCrossRefGoogle Scholar
  68. Sun M., Voit G. M., Donahue M., et al. 2009, ApJ, 693, 1142ADSCrossRefGoogle Scholar
  69. Turner M. L., Schaye J., Crain R. A., Theuns T., Wendt M., 2016, MNRAS, 462, 2440ADSCrossRefGoogle Scholar
  70. Übler H., Naab T., Oser L., et al. 2014, MNRAS, 443, 2092ADSCrossRefGoogle Scholar
  71. Uhlig M., Pfrommer C., Sharma M., et al. 2012, MNRAS, 423, 2374ADSCrossRefGoogle Scholar
  72. van de Voort F., Schaye J., 2012, MNRAS, 423, 2991ADSCrossRefGoogle Scholar
  73. van de Voort F., Schaye J., Booth C. M., Haas M. R., Dalla Vecchia C., 2011a, MNRAS, 414, 2458Google Scholar
  74. van de Voort F., Schaye J., Booth C. M., Dalla Vecchia C., 2011b, MNRAS, 415, 2782Google Scholar
  75. van de Voort F., Schaye J., Altay G., Theuns T., 2012, MNRAS, 421, 2809ADSCrossRefGoogle Scholar
  76. van de Voort F., Quataert E., Hopkins P. F., et al. 2016, MNRAS, 463, 4533ADSCrossRefGoogle Scholar
  77. van de Voort F., Bahé Y. M., Bower R. G., et al. 2017, MNRAS, 466, 3460ADSCrossRefGoogle Scholar
  78. Veilleux S., Cecil G., Bland-Hawthorn J., 2005, ARA&A, 43, 769ADSCrossRefGoogle Scholar
  79. Vikhlinin A., Burenin R. A., Ebeling H., et al. 2009, ApJ, 692, 1033ADSCrossRefGoogle Scholar
  80. Vogelsberger M., Genel S., Springel V., et al. 2014, MNRAS, 444, 1518ADSCrossRefGoogle Scholar
  81. Wetzel A. R., Tinker J. L., Conroy C., 2012, MNRAS, 424, 232ADSCrossRefGoogle Scholar
  82. White S. D. M., Frenk C. S., 1991, ApJ, 379, 52ADSCrossRefGoogle Scholar
  83. White S. D. M., Rees M. J., 1978, MNRAS, 183, 341ADSCrossRefGoogle Scholar
  84. Wiersma R. P. C., Schaye J., Smith B. D., 2009, MNRAS, 393, 99ADSCrossRefGoogle Scholar
  85. Wilman D. J., Zibetti S., Budavári T., 2010, MNRAS, 406, 1701ADSGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Theoretical AstrophysicsHeidelberg Institute for Theoretical StudiesHeidelbergGermany
  2. 2.Academia Sinica Institute of Astronomy and AstrophysicsTaipeiTaiwan
  3. 3.Heidelberg Institute for Theoretical StudiesHeidelbergGermany
  4. 4.Astronomy DepartmentYale UniversityNew HavenUSA

Personalised recommendations