Advertisement

Observational Diagnostics of Gas Flows: Insights from Cosmological Simulations

  • Claude-André Faucher-GiguèreEmail author
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 430)

Abstract

Galactic accretion interacts in complex ways with gaseous halos, including galactic winds. As a result, observational diagnostics typically probe a range of intertwined physical phenomena. Because of this complexity, cosmological hydrodynamic simulations have played a key role in developing observational diagnostics of galactic accretion. In this chapter, we review the status of different observational diagnostics of circum-galactic gas flows, in both absorption (galaxy pair and down-the-barrel observations in neutral hydrogen and metals; kinematic and azimuthal angle diagnostics; the cosmological column density distribution; and metallicity) and emission (Lyα; UV metal lines; and diffuse X-rays). We conclude that there is no simple and robust way to identify galactic accretion in individual measurements. Rather, progress in testing galactic accretion models is likely to come from systematic, statistical comparisons of simulation predictions with observations. We discuss specific areas where progress is likely to be particularly fruitful over the next few years.

Keywords

Smooth Particle Hydrodynamic High Redshift Cold Stream Galactic Wind Cosmological Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to many colleagues and collaborators who have helped shape our views on galactic accretion, including: Chuck Steidel, Gwen Rudie, Alice Shapley, Xavier Prochaska, Joe Hennawi, Michele Fumagalli, Nicolas Lehner, Chris Howk, Lars Hernquist, Joop Schaye, Freeke van de Voort, Andrey Kravtsov, Cameron Liang, Mark Dijkstra, Norm Murray, Eliot Quataert, Dusan Kereš, Phil Hopkins, Alexander Muratov, Daniel Anglés-Alcázar, and Zach Hafen. Our research on galactic accretion has been supported by NSF and NASA.

References

  1. Adelberger, K. L., Erb, D. K., Steidel, C. C., et al. 2005a, ApJ, 620, L75Google Scholar
  2. Adelberger, K. L., Shapley, A. E., Steidel, C. C., et al. 2005b, ApJ, 629, 636Google Scholar
  3. Adelberger, K. L., Steidel, C. C., Shapley, A. E., & Pettini, M. 2003, ApJ, 584, 45ADSCrossRefGoogle Scholar
  4. Agertz, O., & Kravtsov, A. V. 2015, ApJ, 804, 18ADSCrossRefGoogle Scholar
  5. Agertz, O., Moore, B., Stadel, J., et al. 2007, MNRAS, 380, 963ADSCrossRefGoogle Scholar
  6. Agertz, O., Teyssier, R., & Moore, B. 2009, MNRAS, 397, L64ADSCrossRefGoogle Scholar
  7. Altay, G., Theuns, T., Schaye, J., Crighton, N. H. M., & Dalla Vecchia, C. 2011, ApJ, 737, L37ADSCrossRefGoogle Scholar
  8. Anglés-Alcàzar, D., Faucher-Giguère, C.-A., Kereš, D., Hopkins, P. F., Quataert, E., Murray, N. 2016, MNRAS, submitted, arXiv:1610.08523Google Scholar
  9. Anderson, M. E., Bregman, J. N., & Dai, X. 2013, ApJ, 762, 106ADSCrossRefGoogle Scholar
  10. Bacon, R., Brinchmann, J., Richard, J., et al. 2015, A&A, 575, A75ADSCrossRefGoogle Scholar
  11. Bacon, R., Accardo, M., Adjali, L., et al. 2010, SPIE, 7735, 8Google Scholar
  12. Bauermeister, A., Blitz, L., & Ma, C. 2010, ApJ, 717, 323ADSCrossRefGoogle Scholar
  13. Bird, S., Vogelsberger, M., Sijacki, D., et al. 2013, MNRAS, 429, 3341ADSCrossRefGoogle Scholar
  14. Birnboim, Y., & Dekel, A. 2003, MNRAS, 345, 349ADSCrossRefGoogle Scholar
  15. Bordoloi, R., Lilly, S. J., Hardmeier, E., et al. 2014a, ApJ, 794, 130Google Scholar
  16. Bordoloi, R., Lilly, S. J., Knobel, C., et al. 2011, ApJ, 743, 10ADSCrossRefGoogle Scholar
  17. Bordoloi, R., Rigby, J. R., Tumlinson, J., et al. 2016, MNRAS, 458, 1891ADSCrossRefGoogle Scholar
  18. Bordoloi, R., Tumlinson, J., Werk, J. K., et al. 2014b, ApJ, 796, 136Google Scholar
  19. Borisova, E., Cantalupo, S., Lilly, S. J., et al. 2016, ApJ, 831, 39ADSCrossRefGoogle Scholar
  20. Bouché, N., Finley, H., Schroetter, I., et al. 2016, ApJ, 820, 121ADSCrossRefGoogle Scholar
  21. Bouché, N., Hohensee, W., Vargas, R., et al. 2012, MNRAS, 426, 801ADSCrossRefGoogle Scholar
  22. Bouché, N., Murphy, M. T., Kacprzak, G. G., et al. 2013, Science, 341, 50ADSCrossRefGoogle Scholar
  23. Brooks, A. M., Governato, F., Quinn, T., Brook, C. B., & Wadsley, J. 2009, ApJ, 694, 396ADSCrossRefGoogle Scholar
  24. Bundy, K., Bershady, M. A., Law, D. R., et al. 2015, ApJ, 798, 7ADSCrossRefGoogle Scholar
  25. Cantalupo, S., Arrigoni-Battaia, F., Prochaska, J. X., Hennawi, J. F., & Madau, P. 2014, Nature, 506, 63ADSCrossRefGoogle Scholar
  26. Cantalupo, S., Porciani, C., Lilly, S. J., & Miniati, F. 2005, ApJ, 628, 61ADSCrossRefGoogle Scholar
  27. Ceverino, D., Dekel, A., & Bournaud, F. 2010, MNRAS, 404, 2151ADSGoogle Scholar
  28. Ceverino, D., Primack, J., Dekel, A., & Kassin, S. A. 2016, MNRAS, submitted (arXiv:1608.02114)Google Scholar
  29. Chen, H.-W. 2012, MNRAS, 427, 1238ADSCrossRefGoogle Scholar
  30. Cooper, T. J., Simcoe, R. A., Cooksey, K. L., O’Meara, J. M., & Torrey, P. 2015, ApJ, 812, 58ADSCrossRefGoogle Scholar
  31. Corlies, L., & Schiminovich, D. 2016, ApJ, 827, 148ADSCrossRefGoogle Scholar
  32. Creasey, P., Theuns, T., Bower, R. G., & Lacey, C. G. 2011, MNRAS, 415, 3706ADSCrossRefGoogle Scholar
  33. Crighton, N. H. M., Hennawi, J. F., Simcoe, R. A., et al. 2015, MNRAS, 446, 18ADSCrossRefGoogle Scholar
  34. Davé, R., Oppenheimer, B. D., & Finlator, K. 2011, MNRAS, 415, 11ADSCrossRefGoogle Scholar
  35. Dekel, A., & Birnboim, Y. 2006, MNRAS, 368, 2ADSCrossRefGoogle Scholar
  36. Dekel, A., Birnboim, Y., Engel, G., et al. 2009, Nature, 457, 451ADSCrossRefGoogle Scholar
  37. Diamond-Stanic, A. M., Coil, A. L., Moustakas, J., et al. 2016, ApJ, 824, 24ADSCrossRefGoogle Scholar
  38. Dijkstra, M., & Kramer, R. 2012, MNRAS, 424, 1672ADSCrossRefGoogle Scholar
  39. Dijkstra, M., & Loeb, A. 2009, MNRAS, 400, 1109ADSCrossRefGoogle Scholar
  40. Erb, D. K. 2008, ApJ, 674, 151ADSCrossRefGoogle Scholar
  41. Fabian, A. C. 2012, ARA&A, 50, 455ADSCrossRefGoogle Scholar
  42. Fardal, M. A., Katz, N., Gardner, J. P., et al. 2001, ApJ, 562, 605ADSCrossRefGoogle Scholar
  43. Faucher-Giguère, C.-A., Kereš, D., Dijkstra, M., Hernquist, L., & Zaldarriaga, M. 2010, ApJ, 725, 633ADSCrossRefGoogle Scholar
  44. Faucher-Giguère, C.-A., Feldmann, R., Quataert, E., et al. 2016, MNRAS, 461, L32ADSCrossRefGoogle Scholar
  45. Faucher-Giguère, C.-A., Hopkins, P. F., Kereš, D., et al. 2015, MNRAS, 449, 987ADSCrossRefGoogle Scholar
  46. Faucher-Giguère, C.-A., & Kereš, D. 2011, MNRAS, 412, L118ADSCrossRefGoogle Scholar
  47. Faucher-Giguère, C.-A., Kereš, D., & Ma, C.-P. 2011, MNRAS, 417, 2982ADSCrossRefGoogle Scholar
  48. Ford, A. B., Werk, J. K., Davé, R., et al. 2016, MNRAS, 459, 1745ADSCrossRefGoogle Scholar
  49. Förster Schreiber, N. M., Genzel, R., Bouché, N., et al. 2009, ApJ, 706, 1364ADSCrossRefGoogle Scholar
  50. Förster Schreiber, N. M., Shapley, A. E., Erb, D. K., et al. 2011, ApJ, 731, 65ADSCrossRefGoogle Scholar
  51. Frank, S., Rasera, Y., Vibert, D., et al. 2012, MNRAS, 420, 1731ADSCrossRefGoogle Scholar
  52. Fu, H., Hennawi, J. F., Prochaska, J. X., Mutel, R., Casey, C., Cooray, A., Kereš, D., Zhang, Z.-Y., Clements, D., Isbell, J., Lang, C., McGinnis, D., Michałowski, M. J., Mooley, K., Perley, D., Stockton, A., & Thompson, D. 2016, The circumgalactic medium of submillimeter galaxies. I. First results from a radio-identified sample. ApJ, 832, 52. arXiv:1607.00016. doi:10.3847/0004-637X/832/1/52. http://adsabs.harvard.edu/abs/2016ApJ...832...52FGoogle Scholar
  53. Fumagalli, M., Cantalupo, S., Dekel, A., et al. 2016a, MNRAS, 462, 1978Google Scholar
  54. Fumagalli, M., Hennawi, J. F., Prochaska, J. X., et al. 2014, ApJ, 780, 74ADSCrossRefGoogle Scholar
  55. Fumagalli, M., O’Meara, J. M., & Prochaska, J. X. 2016b, MNRAS, 455, 4100Google Scholar
  56. Fumagalli, M., O’Meara, J. M., Prochaska, J. X., & Worseck, G. 2013, ApJ, 775, 78ADSCrossRefGoogle Scholar
  57. Fumagalli, M., Prochaska, J. X., Kasen, D., et al. 2011, MNRAS, 418, 1796ADSCrossRefGoogle Scholar
  58. Gauthier, J.-R., Chen, H.-W., & Tinker, J. L. 2010, ApJ, 716, 1263ADSCrossRefGoogle Scholar
  59. Genzel, R., Newman, S., Jones, T., et al. 2011, ApJ, 733, 101ADSCrossRefGoogle Scholar
  60. Glidden, A., Cooper, T. J., Cooksey, K. L., Simcoe, R. A., & O’Meara, J. M. 2016, Predominantly low metallicities measured in a stratified sample of Lyman limit systems at Z = 3.7. ApJ, 833, 270. arXiv:1604.02144. doi: 10.3847/1538-4357/833/2/270. http://adsabs.harvard.edu/abs/2016ApJ...833..270G
  61. Goerdt, T., & Ceverino, D. 2015, MNRAS, 450, 3359ADSCrossRefGoogle Scholar
  62. Goerdt, T., Dekel, A., Sternberg, A., et al. 2010, MNRAS, 407, 613ADSCrossRefGoogle Scholar
  63. Goerdt, T., Dekel, A., Sternberg, A., Gnat, O., & Ceverino, D. 2012, MNRAS, 424, 2292ADSCrossRefGoogle Scholar
  64. Gould, A., & Weinberg, D. H. 1996, ApJ, 468, 462ADSCrossRefGoogle Scholar
  65. Hafen, Z., Faucher-Giguere, C.-A., Angles-Alcazar, D., et al. 2016, preprint (arXiv:1608.05712)Google Scholar
  66. Haiman, Z., Spaans, M., & Quataert, E. 2000, ApJ, 537, L5ADSCrossRefGoogle Scholar
  67. Hayward, C. C., & Hopkins, P. F. 2015, preprint (arXiv:1510.05650)Google Scholar
  68. Heckman, T. M., & Borthakur, S. 2016, ApJ, 822, 9ADSCrossRefGoogle Scholar
  69. Hennawi, J. F., Prochaska, J. X., Burles, S., et al. 2006, ApJ, 651, 61ADSCrossRefGoogle Scholar
  70. Hennawi, J. F., Prochaska, J. X., Cantalupo, S., & Arrigoni-Battaia, F. 2015, Science, 348, 779ADSMathSciNetCrossRefGoogle Scholar
  71. Henriques, B. M. B., White, S. D. M., Thomas, P. A., et al. 2013, MNRAS, 431, 3373ADSCrossRefGoogle Scholar
  72. Hopkins, P. F. 2013, MNRAS, 428, 2840ADSCrossRefGoogle Scholar
  73. Hopkins, P. F.. 2015, MNRAS, 450, 53ADSCrossRefGoogle Scholar
  74. Hopkins, P. F., Kereš, D., Oñorbe, J., et al. 2014, MNRAS, 445, 581ADSCrossRefGoogle Scholar
  75. Hu, C.-Y., Naab, T., Walch, S., Moster, B. P., & Oser, L. 2014, MNRAS, 443, 1173ADSCrossRefGoogle Scholar
  76. Hummels, C. B., Bryan, G. L., Smith, B. D., & Turk, M. J. 2013, MNRAS, 430, 1548ADSCrossRefGoogle Scholar
  77. Hutchings, R. M., & Thomas, P. A. 2000, MNRAS, 319, 721ADSCrossRefGoogle Scholar
  78. Kacprzak, G. G., Churchill, C. W., Barton, E. J., & Cooke, J. 2011, ApJ, 733, 105ADSCrossRefGoogle Scholar
  79. Kacprzak, G. G., Churchill, C. W., Ceverino, D., et al. 2010, ApJ, 711, 533ADSCrossRefGoogle Scholar
  80. Kacprzak, G. G., Churchill, C. W., & Nielsen, N. M. 2012, ApJ, 760, L7ADSCrossRefGoogle Scholar
  81. Kacprzak, G. G., Muzahid, S., Churchill, C. W., Nielsen, N. M., & Charlton, J. C. 2015, ApJ, 815, 22ADSCrossRefGoogle Scholar
  82. Kauffmann, G., Borthakur, S., & Nelson, D. 2016, MNRAS, 462, 3751ADSCrossRefGoogle Scholar
  83. Kereš, D., & Hernquist, L. 2009, ApJ, 700, L1ADSCrossRefGoogle Scholar
  84. Kereš, D., Katz, N., Davé, R., Fardal, M., & Weinberg, D. H. 2009a, MNRAS, 396, 2332Google Scholar
  85. Kereš, D., Katz, N., Fardal, M., Davé, R., & Weinberg, D. H. 2009b, MNRAS, 395, 160Google Scholar
  86. Kereš, D., Katz, N., Weinberg, D. H., & Davé, R. 2005, MNRAS, 363, 2ADSCrossRefGoogle Scholar
  87. Kimm, T., Slyz, A., Devriendt, J., & Pichon, C. 2011, MNRAS, 413, L51ADSCrossRefGoogle Scholar
  88. Kollmeier, J. A., Zheng, Z., Davé, R., et al. 2010, ApJ, 708, 1048ADSCrossRefGoogle Scholar
  89. Kornei, K. A., Shapley, A. E., Martin, C. L., et al. 2012, ApJ, 758, 135ADSCrossRefGoogle Scholar
  90. Lau, M. W., Prochaska, J. X., & Hennawi, J. F. 2016, ApJS, 226, 25ADSCrossRefGoogle Scholar
  91. Law, D. R., Steidel, C. C., Shapley, A. E., et al. 2012, ApJ, 759, 29ADSCrossRefGoogle Scholar
  92. Lehner, N., Howk, J. C., Tripp, T. M., et al. 2013, ApJ, 770, 138ADSCrossRefGoogle Scholar
  93. Lehner, N., Howk, J. C., & Wakker, B. P. 2015, ApJ, 804, 79ADSCrossRefGoogle Scholar
  94. Lehner, N., O’Meara, J. M., Fox, A. J., et al. 2014, ApJ, 788, 119ADSCrossRefGoogle Scholar
  95. Lehner, N., O’Meara, J. M., Howk, J. C., Prochaska, J. X., & Fumagalli, M. 2016, The cosmic evolution of the metallicity distribution of ionized gas traced By Lyman Limit systems. ApJ, 833, 283. arXiv:1608.02588. doi:10.3847/1538-4357/833/2/283. http://adsabs.harvard.edu/abs/2016ApJ...833..283LGoogle Scholar
  96. Li, J.-T., Bregman, J. N., Wang, Q. D., Crain, R. A., & Anderson, M. E. 2016, ApJ, 830, 134ADSCrossRefGoogle Scholar
  97. Liang, C. J., & Chen, H.-W. 2014, MNRAS, 445, 2061ADSCrossRefGoogle Scholar
  98. Liang, C. J., Kravtsov, A. V., & Agertz, O. 2016, MNRAS, 458, 1164ADSCrossRefGoogle Scholar
  99. Ma, X., Hopkins, P. F., Faucher-Giguère, C.-A., et al. 2016a, MNRAS, 456, 2140Google Scholar
  100. Ma, X., Hopkins, P. F., Wetzel, A. R., et al. 2016b, MNRAS, submitted (arXiv:1608.04133)Google Scholar
  101. Mandelker, N., Padnos, D., Dekel, A., et al. 2016, MNRAS, 463, 3921ADSCrossRefGoogle Scholar
  102. Marinacci, F., Pakmor, R., Springel, V., & Simpson, C. M. 2014, MNRAS, 442, 3745ADSCrossRefGoogle Scholar
  103. Martin, C., Moore, A., Morrissey, P., et al. 2010, SPIE, 7735, 21ADSGoogle Scholar
  104. Martin, C. L., Shapley, A. E., Coil, A. L., et al. 2012, ApJ, 760, 127ADSCrossRefGoogle Scholar
  105. Martin, D. C., Chang, D., Matuszewski, M., et al. 2014a, ApJ, 786, 106Google Scholar
  106. Martin, D. C., Chang, D., Matuszewski, M., et al. 2014b, ApJ, 786, 107Google Scholar
  107. Martin, D. C., Matuszewski, M., Morrissey, P., et al. 2015, Nature, 524, 192ADSCrossRefGoogle Scholar
  108. Matejek, M. S., & Simcoe, R. A. 2012, ApJ, 761, 112ADSCrossRefGoogle Scholar
  109. Matsuda, Y., Yamada, T., Hayashino, T. et al., 2004, AJ, 128, 569ADSCrossRefGoogle Scholar
  110. Matuszewski, M., Chang, D., Crabill, R. M., et al. 2010, SPIE, 7735, 24ADSGoogle Scholar
  111. McNamara, B. R., & Nulsen, P. E. J. 2007, ARA&A, 45, 117ADSCrossRefGoogle Scholar
  112. McQuinn, M., Oh, S. P., & Faucher-Giguère, C.-A. 2011, ApJ, 743, 82ADSCrossRefGoogle Scholar
  113. Ménard, B., & Chelouche, D. 2009, MNRAS, 393, 808ADSCrossRefGoogle Scholar
  114. Mulchaey, J. S., & Jeltema, T. E. 2010, ApJ, 715, L1ADSCrossRefGoogle Scholar
  115. Muratov, A. L., Kereš, D., Faucher-Giguére, C.-A., et al. 2016, MNRAS, submitted (arXiv:1606.09252)Google Scholar
  116. Muratov, A. L., Kereš, D., Faucher-Giguère, C.-A., et al. 2015, MNRAS, 454, 2691ADSCrossRefGoogle Scholar
  117. Navarro, J. F., Frenk, C. S., & White, S. D. M. 1995, MNRAS, 275, 56ADSCrossRefGoogle Scholar
  118. Neeleman, M., Prochaska, J. X., & Wolfe, A. M. 2015, ApJ, 800, 7ADSCrossRefGoogle Scholar
  119. Nelson, D., Genel, S., Pillepich, A., et al. 2016, MNRAS, 460, 2881ADSCrossRefGoogle Scholar
  120. Nelson, D., Genel, S., Vogelsberger, M., Springel, V., et al. 2015, MNRAS, 448, 59ADSCrossRefGoogle Scholar
  121. Nelson, D., Vogelsberger, M., Genel, S., et al. 2013, MNRAS, 429, 3353ADSCrossRefGoogle Scholar
  122. Nestor, D. B., Johnson, B. D., Wild, V., et al. 2011, MNRAS, 412, 1559ADSCrossRefGoogle Scholar
  123. Newman, S. F., Genzel, R., Förster-Schreiber, N. M., et al. 2012, ApJ, 761, 43ADSCrossRefGoogle Scholar
  124. Oklopčić, A., Hopkins, P. F., Feldmann, R., Kereš, D., Faucher-Giguère, C.-A., & Murray, N. 2017, Giant clumps in the FIRE simulations: a case study of a massive highredshift galaxy. MNRAS, 465, 952-969. arXiv:1603.03778. doi:10.1093/mnras/stw2754. http://adsabs.harvard.edu/abs/2017MNRAS.465..952OGoogle Scholar
  125. Oppenheimer, B. D., Davé, R., Kereš, D., et al. 2010, MNRAS, 406, 2325ADSCrossRefGoogle Scholar
  126. Prochaska, J. X., Hennawi, J. F., & Simcoe, R. A. 2013, ApJ, 762, L19ADSCrossRefGoogle Scholar
  127. Prochaska, J. X., Lau, M. W., & Hennawi, J. F. 2014, ApJ, 796, 140ADSCrossRefGoogle Scholar
  128. Prochaska, J. X., O’Meara, J. M., & Worseck, G. 2010, ApJ, 718, 392ADSCrossRefGoogle Scholar
  129. Prochaska, J. X., & Wolfe, A. M. 2009, ApJ, 696, 1543ADSCrossRefGoogle Scholar
  130. Rafelski, M., Neeleman, M., Fumagalli, M., Wolfe, A. M., & Prochaska, J. X. 2014, ApJ, 782, L29ADSCrossRefGoogle Scholar
  131. Rahmati, A., Pawlik, A. H., Raicevic, M., & Schaye, J. 2013, MNRAS, 430, 2427ADSCrossRefGoogle Scholar
  132. Rahmati, A., Schaye, J., Bower, R. G., et al. 2015, MNRAS, 452, 2034ADSCrossRefGoogle Scholar
  133. Rauch, M., Becker, G. D., & Haehnelt, M. G. 2016, MNRAS, 455, 3991ADSCrossRefGoogle Scholar
  134. Rauch, M., Becker, G. D., Haehnelt, M. G., et al. 2011, MNRAS, 418, 1115ADSCrossRefGoogle Scholar
  135. Rauch, M., Becker, G. D., Haehnelt, M. G., Gauthier, J.-R., & Sargent, W. L. W. 2013, MNRAS, 429, 429ADSCrossRefGoogle Scholar
  136. Rauch, M., Sargent, W. L. W., & Barlow, T. A. 1999, ApJ, 515, 500ADSCrossRefGoogle Scholar
  137. Rauch, M., Sargent, W. L. W.. 2001, ApJ, 554, 823ADSCrossRefGoogle Scholar
  138. Read, J. I., & Hayfield, T. 2012, MNRAS, 422, 3037ADSCrossRefGoogle Scholar
  139. Ribaudo, J., Lehner, N., & Howk, J. C. 2011, ApJ, 736, 42ADSCrossRefGoogle Scholar
  140. Rosdahl, J., & Blaizot, J. 2012, MNRAS, 423, 344ADSCrossRefGoogle Scholar
  141. Rubin, K. H. R., Hennawi, J. F., Prochaska, J. X., et al. 2015, ApJ, 808, 38ADSCrossRefGoogle Scholar
  142. Rubin, K. H. R., Prochaska, J. X., Koo, D. C., & Phillips, A. C. 2012, ApJ, 747, L26ADSCrossRefGoogle Scholar
  143. Rubin, K. H. R., Prochaska, J. X., Koo, D. C., et al. 2014, ApJ, 794, 156ADSCrossRefGoogle Scholar
  144. Rudie, G. C., Steidel, C. C., Trainor, R. F., et al. 2012, ApJ, 750, 67ADSCrossRefGoogle Scholar
  145. Saitoh, T. R., & Makino, J. 2013, ApJ, 768, 44ADSCrossRefGoogle Scholar
  146. Schaye, J., Carswell, R. F., & Kim, T.-S. 2007, MNRAS, 379, 1169ADSCrossRefGoogle Scholar
  147. Schaye, J., Crain, R. A., Bower, R. G., et al. 2015, MNRAS, 446, 521ADSCrossRefGoogle Scholar
  148. Shen, S., Madau, P., Aguirre, A., et al. 2012, ApJ, 760, 50ADSCrossRefGoogle Scholar
  149. Shen, S., Madau, P., Guedes, J., et al. 2013, ApJ, 765, 89ADSCrossRefGoogle Scholar
  150. Shen, S., Wadsley, J., & Stinson, G. 2010, MNRAS, 407, 1581ADSCrossRefGoogle Scholar
  151. Sijacki, D., Vogelsberger, M., Kereš, D., Springel, V., & Hernquist, L. 2012, MNRAS, 424, 2999ADSCrossRefGoogle Scholar
  152. Simcoe, R. A., Sargent, W. L. W., Rauch, M., & Becker, G. 2006, ApJ, 637, 648ADSCrossRefGoogle Scholar
  153. Somerville, R. S., & Davé, R. 2015, ARA&A, 53, 51ADSCrossRefGoogle Scholar
  154. Springel, V. 2010, MNRAS, 401, 791ADSCrossRefGoogle Scholar
  155. Sravan, N., Faucher-Giguere, C.-A., van de Voort, F., et al. 2016, MNRAS, 463, 120ADSCrossRefGoogle Scholar
  156. Steidel, C. C., Adelberger, K. L., Shapley, A. E., et al. 2000, ApJ, 532, 170ADSCrossRefGoogle Scholar
  157. Steidel, C. C., Bogosavljević, M., Shapley, A. E., et al. 2011, ApJ, 736, 160ADSCrossRefGoogle Scholar
  158. Steidel, C. C., Erb, D. K., Shapley, A. E., et al. 2010, ApJ, 717, 289ADSCrossRefGoogle Scholar
  159. Steidel, C. C., Kollmeier, J. A., Shapley, A. E., et al. 2002, ApJ, 570, 526ADSCrossRefGoogle Scholar
  160. Stewart, K., Maller, A., Oñorbe, J., et al. 2016, ApJ, submitted (arXiv:1606.08542)Google Scholar
  161. Stewart, K. R., Brooks, A. M., Bullock, J. S., et al. 2013, ApJ, 769, 74ADSCrossRefGoogle Scholar
  162. Stewart, K. R., Kaufmann, T., Bullock, J. S., et al. 2011, ApJ, 738, 39ADSCrossRefGoogle Scholar
  163. Stinson, G. S., Brook, C., Macciò, A. V., et al. 2013, MNRAS, 428, 129ADSCrossRefGoogle Scholar
  164. Suresh, J., Bird, S., Vogelsberger, M., et al. 2015, MNRAS, 448, 895ADSCrossRefGoogle Scholar
  165. Taniguchi, Y., & Shioya, Y. 2000, ApJ, 532, L13ADSCrossRefGoogle Scholar
  166. Taniguchi, Y., Shioya, Y., & Kakazu, Y. 2001, ApJ, 562, L15ADSCrossRefGoogle Scholar
  167. Torrey, P., Vogelsberger, M., Genel, S., et al. 2014, MNRAS, 438, 1985ADSCrossRefGoogle Scholar
  168. Trainor, R. F., & Steidel, C. C. 2012, ApJ, 752, 39ADSCrossRefGoogle Scholar
  169. Tumlinson, J., Thom, C., Werk, J. K., et al. 2011, Science, 334, 948ADSCrossRefGoogle Scholar
  170. Turner, M. L., Schaye, J., Crain, R. A., Theuns, T., & Wendt, M. 2016, MNRAS, 462, 2440ADSCrossRefGoogle Scholar
  171. Turner, M. L., Schaye, J., Steidel, C. C., Rudie, G. C., & Strom, A. L. 2014, MNRAS, 445, 794ADSCrossRefGoogle Scholar
  172. Turner, M. L., Schaye, J., Steidel, C. C., Rudie, G. C.. 2015, MNRAS, 450, 2067ADSCrossRefGoogle Scholar
  173. van de Voort, F., Quataert, E., Hopkins, P. F., et al. 2016, MNRAS, 463, 4533ADSCrossRefGoogle Scholar
  174. van de Voort, F., & Schaye, J. 2012, MNRAS, 423, 2991ADSCrossRefGoogle Scholar
  175. van de Voort, F.. 2013, MNRAS, 430, 2688ADSCrossRefGoogle Scholar
  176. van de Voort, F., Schaye, J., Altay, G., & Theuns, T. 2012, MNRAS, 421, 2809ADSCrossRefGoogle Scholar
  177. van de Voort, F., Schaye, J., Booth, C. M., Haas, M. R., & Dalla Vecchia, C. 2011, MNRAS, 414, 2458ADSCrossRefGoogle Scholar
  178. Vogelsberger, M., Genel, S., Sijacki, D., et al. 2013, MNRAS, 436, 3031ADSCrossRefGoogle Scholar
  179. Vogelsberger, M., Genel, S., Springel, V., et al. 2014, MNRAS, 444, 1518ADSCrossRefGoogle Scholar
  180. Werk, J. K., Prochaska, J. X., Thom, C., et al. 2013, ApJS, 204, 17ADSCrossRefGoogle Scholar
  181. White, S. D. M., & Frenk, C. S. 1991, ApJ, 379, 52ADSCrossRefGoogle Scholar
  182. Wisnioski, E., Förster Schreiber, N. M., Wuyts, S., et al. 2015, ApJ, 799, 209ADSCrossRefGoogle Scholar
  183. Wisotzki, L., Bacon, R., Blaizot, J., et al. 2016, A&A, 587, A98ADSCrossRefGoogle Scholar
  184. Wolfe, A. M., Gawiser, E., & Prochaska, J. X. 2005, ARA&A, 43, 861ADSCrossRefGoogle Scholar
  185. Wotta, C. B., Lehner, N., Howk, J. C., O’Meara, J. M., & Prochaska, J. X. 2016, Low-metallicity absorbers account for half of the dense circumgalactic gas at z ∼ 1. ApJ, 831, 95. arXiv:1608.02584. doi:10.3847/0004-637X/831/1/95. http://adsabs.harvard.edu/abs/2016ApJ...831...95WGoogle Scholar
  186. Yang, Y., Zabludoff, A., Tremonti, C., Eisenstein, D., & Davé, R. 2009, ApJ, 693, 1579ADSCrossRefGoogle Scholar
  187. Zahedy, F. S., Chen, H.-W., Rauch, M., Wilson, M. L., & Zabludoff, A. 2016, MNRAS, 458, 2423ADSCrossRefGoogle Scholar
  188. Zhang, D., Thompson, T. A., Murray, N., & Quataert, E. 2014, ApJ, 784, 93ADSCrossRefGoogle Scholar
  189. Zjupa, J., & Springel, V. 2017, Angular momentum properties of haloes and their baryon content in the Illustris simulation. MNRAS, 466, 1625–1647. arXiv:1608.01323 doi:10.1093/mnras/stw2945. http://adsabs.harvard.edu/abs/2017MNRAS.466.1625ZGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Physics and Astronomy and Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA)Northwestern UniversityEvanstonUSA

Personalised recommendations