Skip to main content

The Role of the Oxytocin/Arginine Vasopressin System in Animal Models of Autism Spectrum Disorder

  • Chapter
  • First Online:
Translational Anatomy and Cell Biology of Autism Spectrum Disorder

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 224))

Abstract

The nonapeptides oxytocin (OXT) and arginine vasopressin (AVP) are two key mediators in regulating various aspects of mammalian social behaviours. There are several lines of evidence that genetic variants of the OXT/AVP system exist in autism spectrum disorder (ASD) and that this system is dysfunctional at least in some ASD entities. These findings have stimulated the interest to perform studies testing the potential therapeutic application of OXT/AVP in ASD. In this respect animal models are critical for investigating the pathophysiology and for compound screening leading to new therapeutic approaches. Based on findings in animal models that show alterations of the OXT/AVP system, it has been hypothesised that single- or multiple-dose administration or the stimulation of endogenous release can improve several social deficits. Here we comprehensively review the role of the OXT/AVP system in social recognition, social interaction and maternal behaviour in the light of different ASD animal models and patient studies. We further discuss implications for OXT/AVP-related pharmacological interventions to alleviate social deficits in ASD in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akther S, Korshnova N, Zhong J et al (2013) CD38 in the nucleus accumbens and oxytocin are related to paternal behavior in mice. Mol Brain 6:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alabdali A, Al-Ayadhi L, El-Ansary A (2014) Association of social and cognitive impairment and biomarkers in autism spectrum disorders. J Neuroinflammation 11:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Ayadhi LY (2005) Altered oxytocin and vasopressin levels in autistic children in Central Saudi Arabia. Neurosciences (Riyadh) 10(1):47–50

    Google Scholar 

  • Amico JA, Mantella RC, Vollmer RR et al (2004) Anxiety and stress responses in female oxytocin deficient mice. J Neuroendocrinol 16(4):319–324

    Article  CAS  PubMed  Google Scholar 

  • Amico JA, Cai HM, Vollmer RR (2008) Corticosterone release in oxytocin gene deletion mice following exposure to psychogenic versus non-psychogenic stress. Neurosci Lett 442(3):262–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amir RE, Van den Veyver IB, Wan M et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23(2):185–188

    Article  CAS  PubMed  Google Scholar 

  • Anagnostou E, Soorya L, Brian J et al (2014) Intranasal oxytocin in the treatment of autism spectrum disorders: a review of literature and early safety and efficacy data in youth. Brain Res 1580:188–198

    Article  CAS  PubMed  Google Scholar 

  • Andari E, Duhamel JR, Zalla T et al (2010) Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc Natl Acad Sci USA 107(9):4389–4394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoyagi T, Koshimizu TA, Tanoue A (2009) Vasopressin regulation of blood pressure and volume: findings from V1a receptor-deficient mice. Kidney Int 76(10):1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Babygirija R, Bulbul M, Yoshimoto S et al (2012a) Central and peripheral release of oxytocin following chronic homotypic stress in rats. Auton Neurosci Basic Clin 167(1–2):56–60

    Article  CAS  Google Scholar 

  • Babygirija R, Cerjak D, Yoshimoto S et al (2012b) Affiliative behavior attenuates stress responses of GI tract via up-regulating hypothalamic oxytocin expression. Auton Neurosci 169(1):28–33

    Article  CAS  PubMed  Google Scholar 

  • Bales KL, Carter CS (2003) Developmental exposure to oxytocin facilitates partner preferences in male prairie voles (Microtus ochrogaster). Behav Neurosci 117(4):854–859

    Article  CAS  PubMed  Google Scholar 

  • Bales KL, Perkeybile AM, Conley OG et al (2013) Chronic intranasal oxytocin causes long-term impairments in partner preference formation in male prairie voles. Biol Psychiatry 74(3):180–188

    Article  CAS  PubMed  Google Scholar 

  • Bales KL, Solomon M, Jacob S et al (2014) Long-term exposure to intranasal oxytocin in a mouse autism model. Transl Psychiatry 4:e480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barraza JA, Zak PJ (2009) Empathy toward strangers triggers oxytocin release and subsequent generosity. Ann N Y Acad Sci 1167:182–189

    Article  PubMed  Google Scholar 

  • Bartz JA, Hollander E (2008) Oxytocin and experimental therapeutics in autism spectrum disorders. Prog Brain Res 170:451–462

    Article  CAS  PubMed  Google Scholar 

  • Bartz JA, Zaki J, Bolger N et al (2010) Oxytocin selectively improves empathic accuracy. Psychol Sci 21(10):1426–1428

    Article  PubMed  Google Scholar 

  • Bealer SL, Crowley WR (1999) Stimulation of central and systemic oxytocin release by histamine in the paraventricular hypothalamic nucleus: evidence for an interaction with norepinephrine. Endocrinology 140(3):1158–1164

    Article  CAS  PubMed  Google Scholar 

  • Becker RO, Lazzari VM, Menezes IC et al (2013) Sexual behavior and dendritic spine density of posterodorsal medial amygdala neurons in oxytocin knockout female mice. Behav Brain Res 256:95–100

    Article  CAS  PubMed  Google Scholar 

  • Bielsky IF, Hu SB, Szegda KL et al (2004) Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology 29(3):483–493

    Article  CAS  PubMed  Google Scholar 

  • Bielsky IF, Hu SB, Ren X et al (2005) The V1a vasopressin receptor is necessary and sufficient for normal social recognition: a gene replacement study. Neuron 47(4):503–513

    Article  CAS  PubMed  Google Scholar 

  • Birkett SD, Pickering BT (1988) The vasopressin precursor in the Brattleboro (di/di) rat. Int J Pept Protein Res 32(6):565–572

    Article  CAS  PubMed  Google Scholar 

  • Bosch OJ, Neumann ID (2010) Vasopressin released within the central amygdala promotes maternal aggression. Eur J Neurosci 31(5):883–891

    Article  PubMed  Google Scholar 

  • Bosch OJ, Kromer SA, Brunton PJ et al (2004) Release of oxytocin in the hypothalamic paraventricular nucleus, but not central amygdala or lateral septum in lactating residents and virgin intruders during maternal defence. Neuroscience 124(2):439–448

    Article  CAS  PubMed  Google Scholar 

  • Bosch OJ, Pfortsch J, Beiderbeck DI et al (2010) Maternal behaviour is associated with vasopressin release in the medial preoptic area and bed nucleus of the stria terminalis in the rat. J Neuroendocrinol 22(5):420–429

    Article  CAS  PubMed  Google Scholar 

  • Bruce HM (1959) An exteroceptive block to pregnancy in the mouse. Nature 184:105

    Article  CAS  PubMed  Google Scholar 

  • Buchheim A, Heinrichs M, George C et al (2009) Oxytocin enhances the experience of attachment security. Psychoneuroendocrinology 34(9):1417–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai D, Purkayastha S (2013) A new horizon: oxytocin as a novel therapeutic option for obesity and diabetes. Drug Discov Today Dis Mech 10(1–2):e63–e68

    Article  PubMed  PubMed Central  Google Scholar 

  • Caldwell HK, Young WS 3rd (2009) Persistence of reduced aggression in vasopressin 1b receptor knockout mice on a more “wild” background. Physiol Behav 97(1):131–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camerino C (2009) Low sympathetic tone and obese phenotype in oxytocin-deficient mice. Obesity (Silver Spring) 17(5):980–984

    Article  CAS  Google Scholar 

  • Campbell DB, Datta D, Jones ST et al (2011) Association of oxytocin receptor (OXTR) gene variants with multiple phenotype domains of autism spectrum disorder. J Neurodev Disord 3(2):101–112

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter CS (2007) Sex differences in oxytocin and vasopressin: implications for autism spectrum disorders? 176(1):170–186

    Google Scholar 

  • Charles R, Sakurai T, Takahashi N et al (2014) Introduction of the human AVPR1A gene substantially alters brain receptor expression patterns and enhances aspects of social behavior in transgenic mice. Dis Model Mech 7(8):1013–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves VE, Tilelli CQ, Brito NA et al (2013) Role of oxytocin in energy metabolism. Peptides 45:9–14

    Article  CAS  PubMed  Google Scholar 

  • Chini B, Leonzino M, Braida D et al (2014) Learning about oxytocin: pharmacologic and behavioral issues. Biol Psychiatry 76(5):360–366

    Article  CAS  PubMed  Google Scholar 

  • Dadds MR, MacDonald E, Cauchi A et al (2014) Nasal oxytocin for social deficits in childhood autism: a randomized controlled trial. J Autism Dev Disord 44(3):521–531

    Article  PubMed  Google Scholar 

  • Daikoku R, Kunitake T, Kato K et al (2007) Body water balance and body temperature in vasopressin V1b receptor knockout mice. Auton Neurosci 136(1–2):58–62

    Article  CAS  PubMed  Google Scholar 

  • Demotes-Mainard J, Chauveau J, Rodriguez F et al (1986) Septal release of vasopressin in response to osmotic, hypovolemic and electrical stimulation in rats. Brain Res 381(2):314–321

    Article  CAS  PubMed  Google Scholar 

  • Di Simplicio M, Massey-Chase R, Cowen PJ et al (2009) Oxytocin enhances processing of positive versus negative emotional information in healthy male volunteers. J Psychopharmacol 23(3):241–248

    Article  CAS  PubMed  Google Scholar 

  • Domes G, Heinrichs M, Glascher J et al (2007) Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol Psychiatry 62(10):1187–1190

    Article  CAS  PubMed  Google Scholar 

  • Donaldson ZR, Young LJ (2008) Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322(5903):900–904

    Article  CAS  PubMed  Google Scholar 

  • Douglas AJ, Neumann I, Meeren HK et al (1995) Central endogenous opioid inhibition of supraoptic oxytocin neurons in pregnant rats. J Neurosci 15(7 Pt 1):5049–5057

    CAS  PubMed  Google Scholar 

  • Dufour-Rainfray D, Vourc’h P, Le Guisquet AM et al (2010) Behavior and serotonergic disorders in rats exposed prenatally to valproate: a model for autism. Neurosci Lett 470(1):55–59

    Article  CAS  PubMed  Google Scholar 

  • Ebner K, Wotjak CT, Holsboer F et al (1999) Vasopressin released within the septal brain area during swim stress modulates the behavioural stress response in rats. Eur J Neurosci 11(3):997–1002

    Article  CAS  PubMed  Google Scholar 

  • Ebner K, Wotjak CT, Landgraf R et al (2000) A single social defeat experience selectively stimulates the release of oxytocin, but not vasopressin, within the septal brain area of male rats. Brain Res 872(1–2):87–92

    Article  CAS  PubMed  Google Scholar 

  • Ebner K, Wotjak CT, Landgraf R et al (2002) Forced swimming triggers vasopressin release within the amygdala to modulate stress-coping strategies in rats. Eur J Neurosci 15(2):384–388

    Article  PubMed  Google Scholar 

  • Egashira N, Tanoue A, Higashihara F et al (2004) V1a receptor knockout mice exhibit impairment of spatial memory in an eight-arm radial maze. Neurosci Lett 356(3):195–198

    Article  CAS  PubMed  Google Scholar 

  • Egashira N, Tanoue A, Higashihara F et al (2005) Disruption of the prepulse inhibition of the startle reflex in vasopressin V1b receptor knockout mice: reversal by antipsychotic drugs. Neuropsychopharmacology 30(11):1996–2005

    Article  CAS  PubMed  Google Scholar 

  • Egashira N, Tanoue A, Matsuda T et al (2007) Impaired social interaction and reduced anxiety-related behavior in vasopressin V1a receptor knockout mice. Behav Brain Res 178(1):123–127

    Article  CAS  PubMed  Google Scholar 

  • Engelmann M, Landgraf R (1994) Microdialysis administration of vasopressin into the septum improves social recognition in Brattleboro rats. Physiol Behav 55(1):145–149

    Article  CAS  PubMed  Google Scholar 

  • Engelmann M, Ebner K, Landgraf R et al (1998) Swim stress triggers the release of vasopressin within the suprachiasmatic nucleus of male rats. Brain Res 792(2):343–347

    Article  CAS  PubMed  Google Scholar 

  • Engelmann M, Ebner K, Landgraf R et al (1999) Emotional stress triggers intrahypothalamic but not peripheral release of oxytocin in male rats. J Neuroendocrinol 11(11):867–872

    Article  CAS  PubMed  Google Scholar 

  • Eskandarian S, Vafaei AA, Vaezi GH et al (2013) Effects of systemic administration of oxytocin on contextual fear extinction in a rat model of post-traumatic stress disorder. Basic Clin Neurosci 4(4):315–322

    PubMed  PubMed Central  Google Scholar 

  • Evans S, Shergill SS, Averbeck BB (2010) Oxytocin decreases aversion to angry faces in an associative learning task. Neuropsychopharmacology 35(13):2502–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feifel D, Priebe K (2001) Vasopressin-deficient rats exhibit sensorimotor gating deficits that are reversed by subchronic haloperidol. Biol Psychiatry 50(6):425–433

    Article  CAS  PubMed  Google Scholar 

  • Feldman R, Golan O, Hirschler-Guttenberg Y et al (2014) Parent child interaction and oxytocin production in pre-schoolers with autism spectrum disorder. Brit J Psychiat 205(2):107–112

    Article  PubMed  Google Scholar 

  • Ferguson JN, Young LJ, Hearn EF et al (2000) Social amnesia in mice lacking the oxytocin gene. Nat Genet 25(3):284–288

    Article  CAS  PubMed  Google Scholar 

  • Ferguson JN, Aldag JM, Insel TR et al (2001) Oxytocin in the medial amygdala is essential for social recognition in the mouse. J Neurosci 21(20):8278–8285

    CAS  PubMed  Google Scholar 

  • Forbes-Lorman RM, Rautio JJ, Kurian JR et al (2012) Neonatal MeCP2 is important for the organization of sex differences in vasopressin expression. Epigenetics 7(3):230–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis SM, Sagar A, Levin-Decanini T et al (2014) Oxytocin and vasopressin systems in genetic syndromes and neurodevelopmental disorders. Brain Res 1580:199–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gigliucci V, Leonzino M, Busnelli M et al (2014) Region specific up-regulation of oxytocin receptors in the opioid oprm1 (−/−) mouse model of autism. Front Pediatr 2:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Grewen KM, Girdler SS, Amico J et al (2005) Effects of partner support on resting oxytocin, cortisol, norepinephrine, and blood pressure before and after warm partner contact. Psychosom Med 67(4):531–538

    Article  CAS  PubMed  Google Scholar 

  • Guastella AJ, Mitchell PB, Mathews F (2008) Oxytocin enhances the encoding of positive social memories in humans. Biol Psychiatry 64(3):256–258

    Article  CAS  PubMed  Google Scholar 

  • Guastella AJ, Einfeld SL, Gray KM et al (2010) Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol Psychiatry 67(7):692–694

    Article  CAS  PubMed  Google Scholar 

  • Guastella AJ, Gray KM, Rinehart NJ et al (2015) The effects of a course of intranasal oxytocin on social behaviors in youth diagnosed with autism spectrum disorders: a randomized controlled trial. J Child Psychol Psychiatry 56(4):444–452

    Article  PubMed  Google Scholar 

  • Gumley A, Braehler C, Macbeth A (2014) A meta-analysis and theoretical critique of oxytocin and psychosis: prospects for attachment and compassion in promoting recovery. Br J Clin Psychol 53(1):42–61

    Article  PubMed  Google Scholar 

  • Hall SS, Lightbody AA, McCarthy BE et al (2012) Effects of intranasal oxytocin on social anxiety in males with fragile X syndrome. Psychoneuroendocrinology 37(4):509–518

    Article  CAS  PubMed  Google Scholar 

  • Hallmayer J, Cleveland S, Torres A et al (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 68(11):1095–1102

    Article  PubMed  PubMed Central  Google Scholar 

  • Han JS (2003) Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies. Trends Neurosci 26(1):17–22

    Article  CAS  PubMed  Google Scholar 

  • Harony H, Wagner S (2010) The contribution of oxytocin and vasopressin to mammalian social behavior: potential role in autism spectrum disorder. Neurosignals 18(2):82–97

    Article  CAS  PubMed  Google Scholar 

  • Henricson M, Berglund AL, Maatta S et al (2008) The outcome of tactile touch on oxytocin in intensive care patients: a randomised controlled trial. J Clin Nurs 17(19):2624–2633

    Article  PubMed  Google Scholar 

  • Hew-Butler T (2010) Arginine vasopressin, fluid balance and exercise: is exercise-associated hyponatraemia a disorder of arginine vasopressin secretion? Sports Med 40(6):459–479

    Article  PubMed  Google Scholar 

  • Higashida H, Yokoyama S, Munesue T et al (2011) CD38 gene knockout juvenile mice: a model of oxytocin signal defects in autism. Biol Pharm Bull 34(9):1369–1372

    Article  CAS  PubMed  Google Scholar 

  • Ho SS, Chow BK, Yung WH (2007) Serotonin increases the excitability of the hypothalamic paraventricular nucleus magnocellular neurons. Eur J Neurosci 25(10):2991–3000

    Article  PubMed  Google Scholar 

  • Hollander E, Novotny S, Hanratty M et al (2003) Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger’s disorders. Neuropsychopharmacology 28(1):193–198

    Article  CAS  PubMed  Google Scholar 

  • Hollander E, Bartz J, Chaplin W et al (2007) Oxytocin increases retention of social cognition in autism. Biol Psychiatry 61(4):498–503

    Article  CAS  PubMed  Google Scholar 

  • Horvat-Gordon M, Granger DA, Schwartz EB et al (2005) Oxytocin is not a valid biomarker when measured in saliva by immunoassay. Physiol Behav 84(3):445–448

    Article  CAS  PubMed  Google Scholar 

  • Insel TR, Shapiro LE (1992) Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proc Natl Acad Sci USA 89(13):5981–5985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Insel TR, Young LJ (2001) The neurobiology of attachment. Nat Rev Neurosci 2(2):129–136

    Article  CAS  PubMed  Google Scholar 

  • Jacob S, Brune CW, Carter CS et al (2007) Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neurosci Lett 417(1):6–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson JD, Ellerbeck KA, Kelly KA et al (2014) Evidence for alterations in stimulatory G proteins and oxytocin levels in children with autism. Psychoneuroendocrinology 40:159–169

    Article  CAS  PubMed  Google Scholar 

  • Jezova D, Skultetyova I, Tokarev DI et al (1995) Vasopressin and oxytocin in stress. Ann N Y Acad Sci 771:192–203

    Article  CAS  PubMed  Google Scholar 

  • Jin D, Liu HX, Hirai H et al (2007) CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446(7131):41–45

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen H, Kjaer A, Knigge U et al (2003a) Serotonin stimulates hypothalamic mRNA expression and local release of neurohypophysial peptides. J Neuroendocrinol 15(6):564–571

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen H, Riis M, Knigge U et al (2003b) Serotonin receptors involved in vasopressin and oxytocin secretion. J Neuroendocrinol 15(3):242–249

    Article  CAS  PubMed  Google Scholar 

  • Kasahara Y, Takayanagi Y, Kawada T et al (2007) Impaired thermoregulatory ability of oxytocin-deficient mice during cold-exposure. Biosci Biotechnol Biochem 71(12):3122–3126

    Article  CAS  PubMed  Google Scholar 

  • Kavaliers M, Colwell DD, Choleris E et al (2003) Impaired discrimination of and aversion to parasitized male odors by female oxytocin knockout mice. Genes Brain Behav 2(4):220–230

    Article  CAS  PubMed  Google Scholar 

  • Kendrick KM, Keverne EB, Chapman C et al (1988) Intracranial dialysis measurement of oxytocin, monoamine and uric acid release from the olfactory bulb and substantia nigra of sheep during parturition, suckling, separation from lambs and eating. Brain Res 439(1–2):1–10

    Article  CAS  PubMed  Google Scholar 

  • Kendrick KM, Keverne EB, Hinton MR et al (1991) Cerebrospinal fluid and plasma concentrations of oxytocin and vasopressin during parturition and vaginocervical stimulation in the sheep. Brain Res Bull 26(5):803–807

    Article  CAS  PubMed  Google Scholar 

  • Kirsch P, Esslinger C, Chen Q et al (2005) Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 25(49):11489–11493

    Article  CAS  PubMed  Google Scholar 

  • Kosaka H, Munesue T, Ishitobi M et al (2012) Long-term oxytocin administration improves social behaviors in a girl with autistic disorder. BMC Psychiatry 12:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosfeld M, Heinrichs M, Zak PJ et al (2005) Oxytocin increases trust in humans. Nature 435(7042):673–676

    Article  CAS  PubMed  Google Scholar 

  • Kotulska K, Jozwiak S (2011) Autism in monogenic disorders. Eur J Paediat Neurol 15(2):177–180

    Article  Google Scholar 

  • Kublaoui BM, Gemelli T, Tolson KP et al (2008) Oxytocin deficiency mediates hyperphagic obesity of Sim1 haploinsufficient mice. Mol Endocrinol 22(7):1723–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landgraf R, Neumann ID (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 25(3–4):150–176

    Article  CAS  PubMed  Google Scholar 

  • Landgraf R, Neumann I, Russell JA et al (1992) Push-pull perfusion and microdialysis studies of central oxytocin and vasopressin release in freely moving rats during pregnancy, parturition, and lactation. Ann N Y Acad Sci 652:326–339

    Article  CAS  PubMed  Google Scholar 

  • Landgraf R, Neumann I, Holsboer F et al (1995) Interleukin-1 beta stimulates both central and peripheral release of vasopressin and oxytocin in the rat. Eur J Neurosci 7(4):592–598

    Article  CAS  PubMed  Google Scholar 

  • Lee R, Garcia F, van de Kar LD et al (2003) Plasma oxytocin in response to pharmaco-challenge to D-fenfluramine and placebo in healthy men. Psychiatry Res 118(2):129–136

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Caldwell HK, Macbeth AH et al (2008) A conditional knockout mouse line of the oxytocin receptor. Endocrinology 149(7):3256–3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Light KC, Grewen KM, Amico JA (2005) More frequent partner hugs and higher oxytocin levels are linked to lower blood pressure and heart rate in premenopausal women. Biol Psychol 69(1):5–21

    Article  PubMed  Google Scholar 

  • Liu HX, Lopatina O, Higashida C et al (2008) Locomotor activity, ultrasonic vocalization and oxytocin levels in infant CD38 knockout mice. Neurosci Lett 448(1):67–70

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Kawamura Y, Shimada T et al (2010) Association of the oxytocin receptor (OXTR) gene polymorphisms with autism spectrum disorder (ASD) in the Japanese population. J Hum Genet 55(3):137–141

    Article  CAS  PubMed  Google Scholar 

  • LoParo D, Waldman ID (2015) The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: a meta-analysis. Mol Psychiatry 20(5):640–646

    Article  CAS  PubMed  Google Scholar 

  • Lopatina O, Inzhutova A, Pichugina YA et al (2011) Reproductive experience affects parental retrieval behaviour associated with increased plasma oxytocin levels in wild-type and CD38-knockout mice. J Neuroendocrinol 23(11):1125–1133

    Article  CAS  PubMed  Google Scholar 

  • Ludwig M, Callahan MF, Neumann I et al (1994) Systemic osmotic stimulation increases vasopressin and oxytocin release within the supraoptic nucleus. J Neuroendocrinol 6(4):369–373

    Article  CAS  PubMed  Google Scholar 

  • Ludwig M, Williams K, Callahan MF et al (1996) Salt loading abolishes osmotically stimulated vasopressin release within the supraoptic nucleus. Neurosci Lett 215(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Lukas M, Neumann ID (2014) Social preference and maternal defeat-induced social avoidance in virgin female rats: sex differences in involvement of brain oxytocin and vasopressin. J Neurosci Methods 234:101–107

    Article  CAS  PubMed  Google Scholar 

  • Lukas M, Bredewold R, Landgraf R et al (2011) Early life stress impairs social recognition due to a blunted response of vasopressin release within the septum of adult male rats. Psychoneuroendocrinology 36(6):843–853

    Article  CAS  PubMed  Google Scholar 

  • Macdonald K, Macdonald TM (2010) The peptide that binds: a systematic review of oxytocin and its prosocial effects in humans. Harv Rev Psychiatry 18(1):1–21

    Article  PubMed  Google Scholar 

  • Mantella RC, Vollmer RR, Rinaman L et al (2004) Enhanced corticosterone concentrations and attenuated Fos expression in the medial amygdala of female oxytocin knockout mice exposed to psychogenic stress. Am J Physiol Regul Integr Comp Physiol 287(6):R1494–R1504

    Article  CAS  PubMed  Google Scholar 

  • Marsh AA, Yu HH, Pine DS et al (2010) Oxytocin improves specific recognition of positive facial expressions. Psychopharmacology (Berl) 209(3):225–232

    Article  CAS  Google Scholar 

  • Mens WB, Laczi F, Tonnaer JA et al (1983) Vasopressin and oxytocin content in cerebrospinal fluid and in various brain areas after administration of histamine and pentylenetetrazol. Pharmacol Biochem Behav 19(4):587–591

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Lindenberg A, Domes G, Kirsch P et al (2011) Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci 12(9):524–538

    Article  CAS  PubMed  Google Scholar 

  • Meziane H, Schaller F, Bauer S et al (2015) An early postnatal oxytocin treatment prevents social and learning deficits in adult mice deficient for Magel2, a gene involved in prader-willi syndrome and autism. Biol Psychiatry 78(2):85–94

    Article  CAS  PubMed  Google Scholar 

  • Mikolajczak M, Gross JJ, Lane A et al (2010) Oxytocin makes people trusting, not gullible. Psychol Sci 21(8):1072–1074

    Article  PubMed  Google Scholar 

  • Miller M, Bales KL, Taylor SL et al (2013) Oxytocin and vasopressin in children and adolescents with autism spectrum disorders: sex differences and associations with symptoms. Autism Res 6(2):91–102

    Article  PubMed  PubMed Central  Google Scholar 

  • Modahl C, Green L, Fein D et al (1998) Plasma oxytocin levels in autistic children. Biol Psychiatry 43(4):270–277

    Article  CAS  PubMed  Google Scholar 

  • Modi ME, Young LJ (2012) The oxytocin system in drug discovery for autism: animal models and novel therapeutic strategies. Horm Behav 61(3):340–350

    Article  CAS  PubMed  Google Scholar 

  • Modi ME, Inoue K, Barrett CE et al (2015) Melanocortin receptor agonists facilitate oxytocin-dependent partner preference formation in the prairie vole. Neuropsychopharmacology 40(8):1856–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momeni N, Nordstrom BM, Horstmann V et al (2005) Alterations of prolyl endopeptidase activity in the plasma of children with autistic spectrum disorders. BMC Psychiatry 5:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moos F, Freund-Mercier MJ, Guerne Y et al (1984) Release of oxytocin and vasopressin by magnocellular nuclei in vitro: specific facilitatory effect of oxytocin on its own release. J Endocrinol 102(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Moos F, Poulain DA, Rodriguez F et al (1989) Release of oxytocin within the supraoptic nucleus during the milk ejection reflex in rats. Exp Brain Res 76(3):593–602

    Article  CAS  PubMed  Google Scholar 

  • Moriguchi A, Ferrario CM, Brosnihan KB et al (1994) Differential regulation of central vasopressin in transgenic rats harboring the mouse Ren-2 gene. Am J Physiol 267(3 Pt 2):R786–R791

    CAS  PubMed  Google Scholar 

  • Murgatroyd C, Patchev AV, Wu Y et al (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12(12):1559–1566

    Article  CAS  PubMed  Google Scholar 

  • Neumann I, Landgraf R (1989) Septal and hippocampal release of oxytocin, but not vasopressin, in the conscious lactating rat during suckling. J Neuroendocrinol 1(4):305–308

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID, Slattery DA (2016) Oxytocin in general anxiety and social fear: a translational approach. Biol Psychiatry 79(3):213–221

    Article  CAS  PubMed  Google Scholar 

  • Neumann I, Russell JA, Wolff B et al (1991) Naloxone increases the release of oxytocin, but not vasopressin, within limbic brain areas of conscious parturient rats: a push-pull perfusion study. Neuroendocrinology 54(6):545–551

    Article  CAS  PubMed  Google Scholar 

  • Neumann I, Ludwig M, Engelmann M et al (1993a) Simultaneous microdialysis in blood and brain: oxytocin and vasopressin release in response to central and peripheral osmotic stimulation and suckling in the rat. Neuroendocrinology 58(6):637–645

    Article  CAS  PubMed  Google Scholar 

  • Neumann I, Russell JA, Landgraf R (1993b) Oxytocin and vasopressin release within the supraoptic and paraventricular nuclei of pregnant, parturient and lactating rats: a microdialysis study. Neuroscience 53(1):65–75

    Article  CAS  PubMed  Google Scholar 

  • Neumann I, Koehler E, Landgraf R et al (1994a) An oxytocin receptor antagonist infused into the supraoptic nucleus attenuates intranuclear and peripheral release of oxytocin during suckling in conscious rats. Endocrinology 134(1):141–148

    Article  CAS  PubMed  Google Scholar 

  • Neumann I, Landgraf R, Takahashi Y et al (1994b) Stimulation of oxytocin release within the supraoptic nucleus and into blood by CCK-8. Am J Physiol 267(6 Pt 2):R1626–R1631

    CAS  PubMed  Google Scholar 

  • Neumann I, Landgraf R, Bauce L et al (1995) Osmotic responsiveness and cross talk involving oxytocin, but not vasopressin or amino acids, between the supraoptic nuclei in virgin and lactating rats. J Neurosci 15(5 Pt 1):3408–3417

    CAS  PubMed  Google Scholar 

  • Neumann I, Douglas AJ, Pittman QJ et al (1996) Oxytocin released within the supraoptic nucleus of the rat brain by positive feedback action is involved in parturition-related events. J Neuroendocrinol 8(3):227–233

    Article  CAS  PubMed  Google Scholar 

  • Nishimori K, Young LJ, Guo Q et al (1996) Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc Natl Acad Sci USA 93(21):11699–11704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishioka T, Anselmo-Franci JA, Li P et al (1998) Stress increases oxytocin release within the hypothalamic paraventricular nucleus. Brain Res 781(1–2):57–61

    Article  CAS  PubMed  Google Scholar 

  • Nomura M, Saito J, Ueta Y et al (2003) Enhanced up-regulation of corticotropin-releasing hormone gene expression in response to restraint stress in the hypothalamic paraventricular nucleus of oxytocin gene-deficient male mice. J Neuroendocrinol 15(11):1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Nyuyki KD, Waldherr M, Baeuml S et al (2011) Yes, I am ready now: differential effects of paced versus unpaced mating on anxiety and central oxytocin release in female rats. PLoS One 6(8):e23599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ota M, Crofton JT, Share L (1994) Hemorrhage-induced vasopressin release in the paraventricular nucleus measured by in vivo microdialysis. Brain Res 658(1–2):49–54

    Article  CAS  PubMed  Google Scholar 

  • Pagani JH, Lee HJ, Young WS 3rd (2011) Postweaning, forebrain-specific perturbation of the oxytocin system impairs fear conditioning. Genes Brain Behav 10(7):710–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen CA, Vadlamudi SV, Boccia ML et al (2006) Maternal behavior deficits in nulliparous oxytocin knockout mice. Genes Brain Behav 5(3):274–281

    Article  CAS  PubMed  Google Scholar 

  • Penagarikano O, Lazaro MT, Lu XH et al (2015) Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Sci Transl Med 7(271):271ra8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pobbe RL, Pearson BL, Blanchard DC et al (2012a) Oxytocin receptor and Mecp2 308/Y knockout mice exhibit altered expression of autism-related social behaviors. Physiol Behav 107(5):641–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pobbe RL, Pearson BL, Defensor EB et al (2012b) Oxytocin receptor knockout mice display deficits in the expression of autism-related behaviors. Horm Behav 61(3):436–444

    Article  CAS  PubMed  Google Scholar 

  • Ragnauth AK, Devidze N, Moy V et al (2005) Female oxytocin gene-knockout mice, in a semi-natural environment, display exaggerated aggressive behavior. Genes Brain Behav 4(4):229–239

    Article  CAS  PubMed  Google Scholar 

  • Ray BM, Ducat EA, Reed B et al (2015) CRF versus AVP in human stress responsivity: initial studies. Drug Alcohol Depend 146:e76–e77

    Article  Google Scholar 

  • Rich ME, deCardenas EJ, Lee HJ et al (2014) Impairments in the initiation of maternal behavior in oxytocin receptor knockout mice. PLoS One 9(6):e98839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rimmele U, Hediger K, Heinrichs M et al (2009) Oxytocin makes a face in memory familiar. J Neurosci 29(1):38–42

    Article  CAS  PubMed  Google Scholar 

  • Rinaman L, Vollmer RR, Karam J et al (2005) Dehydration anorexia is attenuated in oxytocin-deficient mice. Am J Physiol Regul Integr Comp Physiol 288(6):R1791–R1799

    Article  CAS  PubMed  Google Scholar 

  • Ross HE, Cole CD, Smith Y et al (2009) Characterization of the oxytocin system regulating affiliative behavior in female prairie voles. Neuroscience 162(4):892–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatier N (2006) Alpha-Melanocyte-stimulating hormone and oxytocin: a peptide signalling cascade in the hypothalamus. J Neuroendocrinol 18(9):703–710

    Article  CAS  PubMed  Google Scholar 

  • Sabatier N, Caquineau C, Dayanithi G et al (2003) Alpha-melanocyte-stimulating hormone stimulates oxytocin release from the dendrites of hypothalamic neurons while inhibiting oxytocin release from their terminals in the neurohypophysis. J Neurosci 23(32):10351–10358

    CAS  PubMed  Google Scholar 

  • Sala M, Braida D, Lentini D et al (2011) Pharmacologic rescue of impaired cognitive flexibility, social deficits, increased aggression, and seizure susceptibility in oxytocin receptor null mice: a neurobehavioral model of autism. Biol Psychiatry 69(9):875–882

    Article  CAS  PubMed  Google Scholar 

  • Sala M, Braida D, Donzelli A et al (2013) Mice heterozygous for the oxytocin receptor gene (Oxtr(+/−)) show impaired social behaviour but not increased aggression or cognitive inflexibility: evidence of a selective haploinsufficiency gene effect. J Neuroendocrinol 25(2):107–118

    Article  CAS  PubMed  Google Scholar 

  • Sams-Dodd F (1995) Automation of the social interaction test by a video-tracking system: behavioural effects of repeated phencyclidine treatment. J Neurosci Methods 59(2):157–167

    Article  CAS  PubMed  Google Scholar 

  • Scattoni ML, McFarlane HG, Zhodzishsky V et al (2008) Reduced ultrasonic vocalizations in vasopressin 1b knockout mice. Behav Brain Res 187(2):371–378

    Article  CAS  PubMed  Google Scholar 

  • Scheele D, Striepens N, Gunturkun O et al (2012) Oxytocin modulates social distance between males and females. J Neurosci 32(46):16074–16079

    Article  CAS  PubMed  Google Scholar 

  • Scheele D, Kendrick KM, Khouri C et al (2014) An oxytocin-induced facilitation of neural and emotional responses to social touch correlates inversely with autism traits. Neuropsychopharmacology 39(9):2078–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider T, Przewlocki R (2005) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30(1):80–89

    Article  CAS  PubMed  Google Scholar 

  • Seltzer LJ, Ziegler TE, Pollak SD (2010) Social vocalizations can release oxytocin in humans. Proc Biol Sci 277(1694):2661–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AS, Wang Z (2014) Hypothalamic oxytocin mediates social buffering of the stress response. Biol Psychiatry 76(4):281–288

    Article  CAS  PubMed  Google Scholar 

  • Stefanik P, Olexova L, Krskova L (2015) Increased sociability and gene expression of oxytocin and its receptor in the brains of rats affected prenatally by valproic acid. Pharmacol Biochem Behav 131:42–50

    Article  CAS  PubMed  Google Scholar 

  • Szeto A, McCabe PM, Nation DA et al (2011) Evaluation of enzyme immunoassay and radioimmunoassay methods for the measurement of plasma oxytocin. Psychosom Med 73(5):393–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachibana M, Kagitani-Shimono K, Mohri I et al (2013) Long-term administration of intranasal oxytocin is a safe and promising therapy for early adolescent boys with autism spectrum disorders. J Child Adolesc Psychopharmacol 23(2):123–127

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Suzuki M, Sumiyoshi T et al (2003) Subchronic phencyclidine administration alters central vasopressin receptor binding and social interaction in the rat. Brain Res 992(2):239–245

    Article  CAS  PubMed  Google Scholar 

  • Tansey KE, Hill MJ, Cochrane LE et al (2011) Functionality of promoter microsatellites of arginine vasopressin receptor 1A (AVPR1A): implications for autism. Mol Autism 2(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taurines R, Schwenck C, Lyttwin B et al (2014) Oxytocin plasma concentrations in children and adolescents with autism spectrum disorder: correlation with autistic symptomatology. Atten Defic Hyperact Disord 6(3):231–239

    Article  PubMed  Google Scholar 

  • Thibonnier M, Coles P, Thibonnier A et al (2002) Molecular pharmacology and modeling of vasopressin receptors. Prog Brain Res 139:179–196

    Article  CAS  PubMed  Google Scholar 

  • Thompson R, Gupta S, Miller K et al (2004) The effects of vasopressin on human facial responses related to social communication. Psychoneuroendocrinology 29(1):35–48

    Article  CAS  PubMed  Google Scholar 

  • Tracy LM, Georgiou-Karistianis N, Gibson SJ et al (2015) Oxytocin and the modulation of pain experience: implications for chronic pain management. Neurosci Biobehav Rev 55:53–67

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto M, Hattori A (2005) The oxytocinase subfamily of M1 aminopeptidases. Biochim Biophys Acta 1751(1):9–18

    Article  CAS  PubMed  Google Scholar 

  • Uvnas-Moberg K, Bruzelius G, Alster P et al (1993) The antinociceptive effect of non-noxious sensory stimulation is mediated partly through oxytocinergic mechanisms. Acta Physiol Scand 149(2):199–204

    Article  CAS  PubMed  Google Scholar 

  • Van de Kar LD, Javed A, Zhang Y et al (2001) 5-HT2A receptors stimulate ACTH, corticosterone, oxytocin, renin, and prolactin release and activate hypothalamic CRF and oxytocin-expressing cells. J Neurosci 21(10):3572–3579

    CAS  PubMed  Google Scholar 

  • Veening JG, de Jong TR, Waldinger MD et al (2015) The role of oxytocin in male and female reproductive behavior. Eur J Pharmacol 753:209–228

    Article  CAS  PubMed  Google Scholar 

  • Waldherr M, Neumann ID (2007) Centrally released oxytocin mediates mating-induced anxiolysis in male rats. Proc Natl Acad Sci USA 104(42):16681–16684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Ward AR, Morris JF (1995) Oestradiol acutely stimulates exocytosis of oxytocin and vasopressin from dendrites and somata of hypothalamic magnocellular neurons. Neuroscience 68(4):1179–1188

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Kuroda M, Kuwabara H et al (2015) Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism. BrainJ Neurol 138(Pt 11):3400–3412

    Article  Google Scholar 

  • Wersinger SR, Ginns EI, O’Carroll AM et al (2002) Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol Psychiatry 7(9):975–984

    Article  CAS  PubMed  Google Scholar 

  • Wersinger SR, Kelliher KR, Zufall F et al (2004) Social motivation is reduced in vasopressin 1b receptor null mice despite normal performance in an olfactory discrimination task. Horm Behav 46(5):638–645

    Article  CAS  PubMed  Google Scholar 

  • Wersinger SR, Caldwell HK, Christiansen M et al (2007a) Disruption of the vasopressin 1b receptor gene impairs the attack component of aggressive behavior in mice. Genes Brain Behav 6(7):653–660

    Article  CAS  PubMed  Google Scholar 

  • Wersinger SR, Caldwell HK, Martinez L et al (2007b) Vasopressin 1a receptor knockout mice have a subtle olfactory deficit but normal aggression. Genes Brain Behav 6(6):540–551

    Article  CAS  PubMed  Google Scholar 

  • Wersinger SR, Temple JL, Caldwell HK et al (2008) Inactivation of the oxytocin and the vasopressin (Avp) 1b receptor genes, but not the Avp 1a receptor gene, differentially impairs the Bruce effect in laboratory mice (Mus musculus). Endocrinology 149(1):116–121

    Article  CAS  PubMed  Google Scholar 

  • Widmer H, Ludwig M, Bancel F et al (2003) Neurosteroid regulation of oxytocin and vasopressin release from the rat supraoptic nucleus. J Physiol 548(Pt 1):233–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams AR, Carey RJ, Miller M (1983) Behavioral differences between vasopressin-deficient (Brattleboro) and normal Long-Evans rats. Peptides 4(5):711–716

    Article  CAS  PubMed  Google Scholar 

  • Williams AR, Carey RJ, Miller M (1985) Altered emotionality of the vasopressin-deficient Brattleboro rat. Peptides 6(Suppl 1):69–76

    Article  CAS  PubMed  Google Scholar 

  • Winslow JT, Insel TR (2002) The social deficits of the oxytocin knockout mouse. Neuropeptides 36(2–3):221–229

    Article  CAS  PubMed  Google Scholar 

  • Winslow JT, Insel TR (2004) Neuroendocrine basis of social recognition. Curr Opin Neurobiol 14(2):248–253

    Article  CAS  PubMed  Google Scholar 

  • Winslow JT, Hearn EF, Ferguson J et al (2000) Infant vocalization, adult aggression, and fear behavior of an oxytocin null mutant mouse. Horm Behav 37(2):145–155

    Article  CAS  PubMed  Google Scholar 

  • Wolstenholme JT, Edwards M, Shetty SR et al (2012) Gestational exposure to bisphenol a produces transgenerational changes in behaviors and gene expression. Endocrinology 153(8):3828–3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wotjak CT, Ludwig M, Landgraf R (1994) Vasopressin facilitates its own release within the rat supraoptic nucleus in vivo. Neuroreport 5(10):1181–1184

    Article  CAS  PubMed  Google Scholar 

  • Wotjak CT, Kubota M, Liebsch G et al (1996) Release of vasopressin within the rat paraventricular nucleus in response to emotional stress: a novel mechanism of regulating adrenocorticotropic hormone secretion? J Neurosci 16(23):7725–7732

    CAS  PubMed  Google Scholar 

  • Wotjak CT, Ganster J, Kohl G et al (1998) Dissociated central and peripheral release of vasopressin, but not oxytocin, in response to repeated swim stress: new insights into the secretory capacities of peptidergic neurons. Neuroscience 85(4):1209–1222

    Article  CAS  PubMed  Google Scholar 

  • Wotjak CT, Naruo T, Muraoka S et al (2001) Forced swimming stimulates the expression of vasopressin and oxytocin in magnocellular neurons of the rat hypothalamic paraventricular nucleus. Eur J Neurosci 13(12):2273–2281

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Jia M, Ruan Y et al (2005) Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol Psychiatry 58(1):74–77

    Article  CAS  PubMed  Google Scholar 

  • Xu XJ, Shou XJ, Li J et al (2013) Mothers of autistic children: lower plasma levels of oxytocin and Arg-vasopressin and a higher level of testosterone. PLoS One 8(9):e74849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XJ, Zhang HF, Shou XJ et al (2015) Prenatal hyperandrogenic environment induced autistic-like behavior in rat offspring. Physiol Behav 138:13–20

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Cushing BS, Kramer KM et al (2004) Neonatal manipulations of oxytocin alter expression of oxytocin and vasopressin immunoreactive cells in the paraventricular nucleus of the hypothalamus in a gender-specific manner. Neuroscience 125(4):947–955

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yang Y, Chen JM et al (2007) Effect of oxytocin on acupuncture analgesia in the rat. Neuropeptides 41(5):285–292

    Article  CAS  PubMed  Google Scholar 

  • Yirmiya N, Rosenberg C, Levi S et al (2006) Association between the arginine vasopressin 1a receptor (AVPR1a) gene and autism in a family-based study: mediation by socialization skills. Mol Psychiatry 11(5):488–494

    Article  CAS  PubMed  Google Scholar 

  • Young WS 3rd, Shepard E, Amico J et al (1996) Deficiency in mouse oxytocin prevents milk ejection, but not fertility or parturition. J Neuroendocrinol 8(11):847–853

    Article  CAS  PubMed  Google Scholar 

  • Young LJ, Nilsen R, Waymire KG et al (1999) Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature 400(6746):766–768

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Jia MX, Zhang JS et al (2012) Transcutaneous electrical acupoint stimulation in children with autism and its impact on plasma levels of arginine-vasopressin and oxytocin: a prospective single-blinded controlled study. Res Dev Disabil 33(4):1136–1146

    Article  PubMed  Google Scholar 

  • Zhang HF, Li HX, Dai YC et al (2015) Electro-acupuncture improves the social interaction behavior of rats. Physiol Behav 151:485–493

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Babygirija R, Bulbul M et al (2010) Hypothalamic oxytocin mediates adaptation mechanism against chronic stress in rats. Am J Physiol Gastrointest Liver Physiol 299(4):G946–G953

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng JJ, Li SJ, Zhang XD et al (2014) Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices. Nat Neurosci 17(3):391–399

    Article  CAS  PubMed  Google Scholar 

  • Zoicas I, Slattery DA, Neumann ID (2014) Brain oxytocin in social fear conditioning and its extinction: involvement of the lateral septum. Neuropsychopharmacology 39(13):3027–3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by the UULM-PUHSC Joint Center for Neuroscience fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, R., Xu, XJ., Zhang, HF., Han, SP., Han, JS. (2017). The Role of the Oxytocin/Arginine Vasopressin System in Animal Models of Autism Spectrum Disorder. In: Schmeisser, M., Boeckers, T. (eds) Translational Anatomy and Cell Biology of Autism Spectrum Disorder. Advances in Anatomy, Embryology and Cell Biology, vol 224. Springer, Cham. https://doi.org/10.1007/978-3-319-52498-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52498-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52496-2

  • Online ISBN: 978-3-319-52498-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics