Skip to main content

Mathematical and Computational Modelling Frameworks for Integrated Sustainability Assessment (ISA)

  • Chapter
  • First Online:
Strategic Engineering for Cloud Computing and Big Data Analytics

Abstract

Sustaining and optimising complex systems are often challenging problems as such systems contain numerous variables that are interacting with each other in a nonlinear manner. Application of integrated sustainability principles in a complex system (e.g., the Earth’s global climate, social organisations, Boeing’s supply chain, automotive products and plants’ operations, etc.) is also a challenging process. This is due to the interactions between numerous parameters such as economic, ecological, technological, environmental and social factors being required for the life assessment of such a system. Functionality and flexibility assessment of a complex system is a major factor for anticipating the systems’ responses to changes and interruptions. This study outlines generic mathematical and computational approaches to solving the nonlinear dynamical behaviour of complex systems. The goal is to explain the modelling and simulation of system’s responses experiencing interaction change or interruption (i.e., interactive disruption). Having this knowledge will allow the optimisation of systems’ efficiency and would ultimately reduce the system’s total costs. Although, many research works have studied integrated sustainability behaviour of complex systems, this study presents a generic mathematical and computational framework to explain the behaviour of the system following interactive changes and interruptions. Moreover, a dynamic adaptive response of the global system over time should be taken into account. This dynamic behaviour can capture the interactive behaviour of components and sub-systems within a complex global system. Such assessment would benefit many systems including information systems. Due to emergence and expansion of big data analytics and cloud computing systems, such life-cycle assessments can be considered as a strategic planning framework before implementation of such information systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, L., Shamsai, A., & Goharnejad, H. (2015). An analysis of the sustainability of basin water resources using Vensim model. KSCE Journal of Civil Engineering, 19(6), 1941–1949.

    Article  Google Scholar 

  2. Ahmad, S., & Simonovic, S. (2004). Spatial system dynamics: new approach for simulation of water resources systems. Journal of Computing in Civil Engineering, 18(4), 331–340.

    Article  Google Scholar 

  3. Ahuja, R., Magnanti, T., & Orlin, J. (1993). Network flows: theory, algorithms, and applications. Prentice Hall.

    Google Scholar 

  4. Allwood, J., Laursen, S., Russell, S., de Rodríguez, C., & Bocken, N. (2008). An approach to scenario analysis of the sustainability of an industrial sector applied to clothing and textiles in the UK. Journal of Cleaner Production, 16(12), 1234–1246.

    Article  Google Scholar 

  5. Altieri, M. A. (1992). Sustainable agriculture sustainable agricultural development in Latin America: exploring the possibilities. Agriculture, Ecosystems & Environment, 39(1), 1–21.

    Article  Google Scholar 

  6. Azapagic, A. (1999). Life cycle assessment and its application to process selection, design and optimisation. Chemical Engineering Journal, 73(1), 1–21.

    Article  Google Scholar 

  7. Barnes, D., & Chu, D. (2010). Agent-based modeling. In Introduction to modeling for biosciences (pp. 15–77). Springer.

    Google Scholar 

  8. Benoît, C., Norris, G., Valdivia, S., Ciroth, A., Moberg, A., Bos, U., et al. (2010a). The guidelines for social life cycle assessment of products: just in time!. The International Journal of Life Cycle Assessment, 15(2), 156–163.

    Google Scholar 

  9. Benoît, C., Traverso, M., Valdivia, S., Vickery-Niederman, G., Franze, J., Azuero, L., et al. (2013). The methodological sheets for sub-categories in social life cycle assessment (S-LCA). In United Nations Environment Programme (UNEP) and Society for Environmental Toxicology and Chemistry (SETAC).

    Google Scholar 

  10. Benoît, C., & Vickery-Niederman, G. (2010). Social sustainability assessment literature review. The Sustainability Consortium.

    Google Scholar 

  11. Bertrand, N., Jones, L., Hasler, B., Omodei-Zorini, L., Petit, S., & Contini, C. (2008). Limits and targets for a regional sustainability assessment: an interdisciplinary exploration of the threshold concept. In Sustainability impact assessment of land use changes (pp. 405–424). Springer.

    Google Scholar 

  12. Brinsmead, T. S. (2005). Integrated sustainability assessment: identifying methodological options (Tech. Rep.). Australia: Joint Academies Committee on Sustainability of the National Academies Forum.

    Google Scholar 

  13. Brundtland, G. (1987). Our common future: Report of the 1987 World Commission on Environment and Development (pp. 1–59). Oslo: United Nations.

    Google Scholar 

  14. Chen, Y., Li, K., & He, S. (2010). Dynamic multiple criteria decision analysis with application in emergency management assessment. In 2010 IEEE International Conference on Systems Man and Cybernetics (SMC) (pp. 3513–3517).

    Google Scholar 

  15. Chiou, H., Tzeng, G., & Cheng, D. (2005). Evaluating sustainable fishing development strategies using fuzzy MCDM approach. Omega, 33(3), 223–234.

    Article  Google Scholar 

  16. Cinar, D., & Kayakutlu, G. (2010). Scenario analysis using Bayesian networks: a case study in energy sector. Knowledge-Based Systems, 23(3), 267–276.

    Article  Google Scholar 

  17. Ciuffo, B., Miola, A., Punzo, V., & Sala, S. (2012). Dealing with uncertainty in sustainability assessment. Report on the application of different sensitivity analysis techniques to field specific simulation models. EUR, 25166.

    Google Scholar 

  18. Daneshkhah, A., & Bedford, T. (2013). Probabilistic sensitivity analysis of system availability using Gaussian processes. Reliability Engineering & System Safety, 112, 82–93.

    Article  Google Scholar 

  19. Davis, C., Nikolić, I., & Dijkema, G. P. (2009). Integration of life cycle assessment into agent-based modeling. Journal of Industrial Ecology, 13(2), 306–325.

    Article  Google Scholar 

  20. Elkington, J. (1994). Towards the sustainable corporation: Win-win-win business strategies for sustainable development. California Management Review, 36(2), 90–100.

    Article  Google Scholar 

  21. Elkington, J. (2004). Enter the triple bottom line. The triple bottom line: Does it all add up (Vol. 11, issue no. 12, pp. 1–16).

    Google Scholar 

  22. European Union. (2014, 26 March). Environmental statistics and accounts [Computer software manual].

    Google Scholar 

  23. Ferrans, C., & Powers, M. (1985). Quality of life index: Development and psychometric properties. Advances in Nursing Science, 8(1), 15–24.

    Google Scholar 

  24. Fiksel, J. (2003). Designing resilient, sustainable systems. Environmental Science & Technology, 37(23), 5330–5339.

    Google Scholar 

  25. Finkbeiner, M., Schau, E., Lehmann, A., & Traverso, M. (2010). Towards life cycle sustainability assessment. Sustainability, 2(10), 3309–3322.

    Google Scholar 

  26. Forrester, J. W. (1997). Industrial dynamics. Journal of the Operational Research Society, 48(10), 1037–1041.

    Google Scholar 

  27. Gaube, V., Kaiser, C., Wildenberg, M., Adensam, H., Fleissner, P., Kobler, J., & Smetschka, B. (2009). Combining agent-based and stock-flow modelling approaches in a participative analysis of the integrated land system in Reichraming, Austria. Landscape Ecology, 24(9), 1149–1165.

    Google Scholar 

  28. Gonzales, R., & Parrott, L. (2012). Network theory in the assessment of the sustainability of social-ecological systems. Geography Compass, 6(2), 76–88.

    Google Scholar 

  29. Hacking, T., & Guthrie, P. (2008). A framework for clarifying the meaning of Triple bottom-line, integrated, and sustainability assessment. Environmental Impact Assessment Review, 28(2), 73–89.

    Google Scholar 

  30. Halog, A., & Manik, Y. (2011). Advancing integrated systems modelling framework for life cycle sustainability assessment. Sustainability, 3(2), 469–499.

    Google Scholar 

  31. Hawkins, T., Hendrickson, C., Higgins, C., Matthews, H., & Suh, S. (2007). A mixed-unit input-output model for environmental life-cycle assessment and material flow analysis. Environmental Science & Technology, 41(3), 1024–1031.

    Google Scholar 

  32. Heijungs, R., Huppes, G., & Guinée, J. (2010). Life cycle assessment and sustainability analysis of products, materials and technologies. Toward a scientific framework for sustainability life cycle analysis. Polymer Degradation and Stability, 95(3), 422–428.

    Google Scholar 

  33. Hosseinian-Far, A., & Chang, V. (2015a). Sustainability of strategic information systems in emergent vs. prescriptive strategic management. International Journal of Organizational and Collective Intelligence, 5(4).

    Google Scholar 

  34. Hosseinian-Far, A., & Jahankhani, H. (2015b). Quantitative and systemic methods for modeling sustainability. In M. Dastbaz, C. Pattinson, & B. Akhgar (Eds.), Green information technology: A sustainable approach (Chap. 5). UK: Elsevier Science.

    Google Scholar 

  35. Hosseinian-Far, A., Pimenidis, E., Jahankhani, H., & Wijeyesekera, D. (2010). A review on sustainability models. In International Conference on Global Security, Safety, and Sustainability (pp. 216–222).

    Google Scholar 

  36. Hosseinian-Far, A., Pimenidis, E., Jahankhani, H., & Wijeyesekera, D. (2011). Financial Assessment of London Plan Policy 4A. 2 by probabilistic inference and influence diagrams. In Artificial intelligence applications and innovations (pp. 51–60). Springer.

    Google Scholar 

  37. Hu, J., & Yang, L. (2011). Dynamic stochastic multi-criteria decision making method based on cumulative prospect theory and set pair analysis. Systems Engineering Procedia, 1, 432–439.

    Google Scholar 

  38. Ishizaka, A., & Nemery, P. (2013). Multi-criteria decision analysis: Methods and software. Wiley.

    Google Scholar 

  39. ISO 14004:2016. (2016, March). Environmental management systems – General guidelines on implementation (Standard). 1214 Vernier, Geneva, Switzerland: International Organization for Standardization.

    Google Scholar 

  40. ISO 14040:2006. (2006, July). Environmental management—Life cycle assessment—Principles and framework (Vol. 2006; Standard). 1214 Vernier, Geneva, Switzerland: International Organization for Standardization.

    Google Scholar 

  41. ISO 14044:2006. (2006, July). Environmental management—Life cycle assessment—Requirements and guidelines (Standard). 1214 Vernier, Geneva, Switzerland: International Organization for Standardization.

    Google Scholar 

  42. Jackson, M. (2010). An overview of social networks and economic applications. The handbook of social economics (Vol. 1, pp. 511–585).

    Google Scholar 

  43. Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., & Rebitzer, G., et al. (2003). IMPACT 2002+: a new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment, 8(6), 324–330.

    Google Scholar 

  44. Jovanovic, M., Afgan, N., & Bakic, V. (2010). An analytical method for the measurement of energy system sustainability in urban areas. Energy, 35(9), 3909–3920.

    Article  Google Scholar 

  45. Kennedy, M., & O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(3), 425–464.

    Article  MathSciNet  MATH  Google Scholar 

  46. Kim, H., & Holme, P. (2015). Network theory integrated life cycle assessment for an electric power system. Sustainability, 7(8), 10961–10975.

    Article  Google Scholar 

  47. Kirkwood, C. (1998). System dynamics methods. College of Business Arizona State University USA.

    Google Scholar 

  48. Kirkwood, C., & Sarin, R. (1985). Ranking with partial information: A method and an application. Operations Research, 33(1), 38–48.

    Article  MathSciNet  MATH  Google Scholar 

  49. Klöepffer, W. (2008). Life cycle sustainability assessment of products. The International Journal of Life Cycle Assessment, 13(2), 89–95.

    Article  Google Scholar 

  50. Ladyman, J., Lambert, J., & Wiesner, K. (2013). What is a complex system? European Journal for Philosophy of Science, 3(1), 33–67.

    Article  MATH  Google Scholar 

  51. Lal, R., Ghuman, B., & Shearer, W. (1990). Sustainability of different agricultural production systems for a rainforest zone of southern Nigeria. In Transactions 14th International Congress of Soil Science, Kyoto, Japan, August 1990 (Vol. vi, pp. 186–191) .

    Google Scholar 

  52. Lee, S., Geum, Y., Lee, H., & Park, Y. (2012). Dynamic and multidimensional measurement of Product-Service System (PSS) sustainability: a Triple Bottom Line (TBL)-based system dynamics approach. Journal of Cleaner Production, 32, 173–182.

    Article  Google Scholar 

  53. Leontief, W. (1970). Environmental repercussions and the economic structure: An input-output approach. The Review of Economics and Statistics, 262–271.

    Google Scholar 

  54. Lim, S., Quercia, D., & Finkelstein, A. (2010). StakeNet: using social networks to analyse the stakeholders of large-scale software projects. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering (Vol. 1, pp. 295–304).

    Google Scholar 

  55. Malczewski, J., & Rinner, C. (2015). Multicriteria decision analysis in geographic information science. Springer.

    Google Scholar 

  56. McGillivray, M. (1991). The human development index: Yet another redundant composite development indicator? World Development, 19(10), 1461–1468.

    Article  Google Scholar 

  57. Moss, S., Pahl-Wostl, C., & Downing, T. (2001). Agent-based integrated assessment modelling: The example of climate change. Integrated Assessment, 2(1), 17–30.

    Article  Google Scholar 

  58. Ness, B., Urbel-Piirsalu, E., Anderberg, S., & Olsson, L. (2007). Categorising tools for sustainability assessment. Ecological Economics, 60(3), 498–508.

    Google Scholar 

  59. Office for National Statistics. (2013, July). Sustainable development indicators [Computer software manual]. London, UK: Author.

    Google Scholar 

  60. OpenLCA. (2016). http://www.openlca.org/.

  61. Pezzey, J. (1989). Definitions of sustainability. UK Centre for Economic and Environmental Development.

    Google Scholar 

  62. Pizzol, M., Scotti, M., & Thomsen, M. (2013). Network analysis as a tool for assessing environmental sustainability: Applying the ecosystem perspective to a Danish Water Management System. Journal of Environmental Management, 118, 21–31.

    Article  Google Scholar 

  63. Pope, J., Annandale, D., & Morrison-Saunders, A. (2004). Conceptualising sustainability assessment. Environmental Impact Assessment Review, 24(6), 595–616.

    Article  Google Scholar 

  64. Prell, C., Hubacek, K., & Reed, M. (2009). Stakeholder analysis and social network analysis in natural resource management. Society and Natural Resources, 22(6), 501–518.

    Article  Google Scholar 

  65. Rotmans, J., & Asselt, M. (1996). Integrated assessment: A growing child on its way to maturity. Climatic Change, 34(3–4), 327–336.

    Article  Google Scholar 

  66. Schaltegger, S., Bennett, M., & Burritt, R. (2006). Sustainability accounting and reporting (Vol. 21). Springer Science & Business Media.

    Google Scholar 

  67. SETAC. (2016). Society of environmental toxicology and chemistry. http://www2.setac.org/.

  68. Shannon, C. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5(1), 3–55.

    Article  MathSciNet  Google Scholar 

  69. Silalertruksa, T., & Gheewala, S. H. (2009). Environmental sustainability assessment of bio-ethanol production in Thailand. Energy, 34(11), 1933–1946.

    Article  Google Scholar 

  70. Simon, H. (1991). The architecture of complexity. In Facets of systems science (pp. 457–476). Springer.

    Google Scholar 

  71. Smith, C., & McDonald, G. (1997). Assessing the sustainability of agriculture at the planning stage. Journal of Environmental Management, 52(1), 15–37.

    Article  Google Scholar 

  72. Sparrevik, M., Barton, D., Bates, M., & Linkov, I. (2012). Use of stochastic multicriteria decision analysis to support sustainable management of contaminated sediments. Environmental Science & Technology, 46(3), 1326–1334.

    Article  Google Scholar 

  73. Statistical Office of the European Communities. (1982). Eurostatistik, Daten zur Konjunkturanalyse/[Statistisches Amt der Europaischen Gemeinschaften] = Eurostatistics, data for short-term economic analysis / [Statistical Office of the European Communities]. Office for Official Publications of the European Communities Luxembourg.

    Google Scholar 

  74. Sterman, J., & Rahmandad, H. (2014). Introduction to system dynamics. Massachusetts Institute of Technology: MIT OpenCourseWare. Retrieved from http://ocw.mit.edu. License: Creative Commons BY-NC-SA.

  75. Tabara, J., Roca, E., Madrid, C., Valkering, P., Wallman, P., & Weaver, P. (2008). Integrated sustainability assessment of water systems: Lessons from the Ebro River Basin. International Journal of Innovation and Sustainable Development, 3(1–2), 48–69.

    Article  Google Scholar 

  76. Tibor, T., & Feldman, I. (1996). ISO 14000: A guide to the new environmental management standards. Chicago: IL (USA) Irwin.

    Google Scholar 

  77. Todorov, V., & Marinova, D. (2011). Modelling sustainability. Mathematics and Computers in Simulation, 81(7), 1397–1408.

    Article  MathSciNet  Google Scholar 

  78. Varga, L., Allen, P., Strathern, M., Rose-Anderssen, C., Baldwin, J., & Ridgway, K. (2009). Sustainable supply networks: A complex systems perspective. Emergence: Complexity and Organization, 11(3), 16.

    Google Scholar 

  79. Videira, N., Antunes, P., Santos, R., & Lopes, R. (2010). A participatory modelling approach to support integrated sustainability assessment processes. Systems Research and Behavioral Science, 27(4), 446–460.

    Article  Google Scholar 

  80. Wang, J., Jing, Y., Zhang, C., & Zhao, J. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9), 2263–2278.

    Article  Google Scholar 

  81. Weisz, H., & Duchin, F. (2006). Physical and monetary input–output analysis: What makes the difference? Ecological Economics, 57(3), 534–541.

    Google Scholar 

  82. Whitmarsh, L., & Nykvist, B. (2008). Integrated sustainability assessment of mobility transitions: Simulating stakeholders’ visions of and pathways to sustainable land-based mobility. International Journal of Innovation and Sustainable Development, 3(1–2), 115–127.

    Article  Google Scholar 

  83. Xu, Z. (2011, July). Application of System Dynamics model and GIS in sustainability assessment of urban residential development. In Proceedings of the 29th International Conference of the System Dynamics Society. Washington, DC.

    Google Scholar 

  84. Yang, X. (2010). Applying stochastic programming models in financial risk management. The University of Edinburgh.

    Google Scholar 

  85. Zadeh, L. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Article  MathSciNet  MATH  Google Scholar 

  86. Zitrou, A., Bedford, T., & Daneshkhah, A. (2013). Robustness of maintenance decisions: Uncertainty modelling and value of information. Reliability Engineering & System Safety, 120, 60–71.

    Article  Google Scholar 

  87. Zou, Z., Yun, Y., & Sun, J. (2006). Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. Journal of Environmental Sciences, 18(5), 1020–1023.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Farsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Farsi, M., Hosseinian-Far, A., Daneshkhah, A., Sedighi, T. (2017). Mathematical and Computational Modelling Frameworks for Integrated Sustainability Assessment (ISA). In: Hosseinian-Far, A., Ramachandran, M., Sarwar, D. (eds) Strategic Engineering for Cloud Computing and Big Data Analytics. Springer, Cham. https://doi.org/10.1007/978-3-319-52491-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52491-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52490-0

  • Online ISBN: 978-3-319-52491-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics