Skip to main content

Part of the book series: Religion, Spirituality and Health: A Social Scientific Approach ((RELSPHE,volume 1))

  • 786 Accesses

Abstract

The chapter explains the American neuroscientist Paul MacLean’s concept of the “Triune Brain,” illustrates its basic structure, and discusses the evolution and functions of the major brain structures involved in instinctual and emotional behavior in animals and humans. These include the brain stem and basal ganglia, which form the most primitive parts of the brain, and are involved in self-protection and other basic functions needed to survive. The basal ganglia, for instance, is known to control species-specific, fixed-action patterns related to eating, drinking, courtship, and territorial behaviors in lizards. The limbic system, which MacLean thought evolved in early mammals and incorporated many of the functions of the brain stem and the basal ganglia in animals, has been implicated in at least six basic emotions in mammals: anger/aggression, fear, grief, lust/mating, maternal love, and joy. As the chapter explains, emotions, which probably did not exist until the evolution of the limbic system, provided mammals with superior flexibility to respond to life challenges and other circumstances. The chapter further explains that the evolution of the neocortex added even greater flexibility to respond to a variety of life situations by inhibiting the more or less automatic reactions of the brain stem, basal ganglia, and the limbic system. Finally, the chapter introduces the idea that the expansion of the neocortex reflects the evolution of causal beliefs about the nature of the world in our primitive human ancestors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacLean, P. D. (1985). Evolutionary psychiatry and the triune brain. Psychological Medicine, 15(2), 219–221.

    Article  Google Scholar 

  2. MacLean, P. D. (1990). The triune brain in evolution: Role in paleocerebral functions. New York: Plenum Press.

    Google Scholar 

  3. Newman, J. D., & Harris, J. C. (2009). The scientific contributions of Paul D. MacLean (1913–2007). Journal of Nervous and Mental Disease, 197(1), 3–5.

    Article  Google Scholar 

  4. Ploog, D. W. (2003). The place of the Triune Brain in psychiatry. Physiology and Behavior, 79(3), 487–493.

    Article  Google Scholar 

  5. MacLean, P. D. (1952). Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalography and Clinical Neurophysiology, 4(4), 407–418.

    Article  Google Scholar 

  6. MacLean, P. D. (1977). The Triune Brain in conflict. Psychotherapy and Psychosomatics, 28, 207–220.

    Article  Google Scholar 

  7. MacLean, P. D. (1972). Cerebral evolution and emotional processes: New findings on the striatal complex. Annals of the New York Academy of Sciences, 193, 137–149.

    Article  Google Scholar 

  8. MacLean, P. D. (1967). The brain in relation to empathy and medical education. Journal of Nervous and Mental Disease, 144(5), 374–382.

    Article  Google Scholar 

  9. Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. New York: Oxford University Press.

    Google Scholar 

  10. Farries, M. A. (2013). How ‘basal’ are the basal ganglia? Brain, Behavior and Evolution, 82(4), 211–214.

    Article  Google Scholar 

  11. Romer, A. S. (1970). The vertebrate body (4th ed.). Philadelphia: W.B. Saunders.

    Google Scholar 

  12. Kent, G. C. (1973). Comparative anatomy of the vertebrates. Saint Louis: C.V. Mosby.

    Google Scholar 

  13. Aboitiz, F., & Montiel, J. (2007). Origin and evolution of the vertebrate telencephalon, with special reference to the mammalian neocortex. New York: Springer.

    Google Scholar 

  14. Medina, L., Abellan, A., Vicario, A., & Desfilis, E. (2014). Evolutionary and developmental contributions for understanding the organization of the basal ganglia. Brain, Behavior and Evolution, 83(2), 112–125.

    Google Scholar 

  15. Reiner, A., Medina, L., & Veenman, C. L. (1998). Structural and functional evolution of the basal ganglia in vertebrates. Brain Research Reviews, 28(3), 235–285.

    Article  Google Scholar 

  16. Marı́n, O., Smeets, W. J., & González, A. (1998). Evolution of the basal ganglia in tetrapods: A new perspective based on recent studies in amphibians. Trends in Neurosciences, 11(1), 487–494.

    Article  Google Scholar 

  17. Medina, L., & Reiner, A. (1995). Neurotransmitter organization and connectivity of the basal ganglia in vertebrates: Implications for the evolution of basal ganglia. Brain, Behavior and Evolution, 46(4–5), 235–246.

    Google Scholar 

  18. Smeets, W. J., Marin, O., & Gonzalez, A. (2000). Evolution of the basal ganglia: New perspectives through a comparative approach. Journal of Anatomy, 196(4), 501–517.

    Article  Google Scholar 

  19. Tarr, R. S. (1982). Species typical display behavior following stimulation of the reptilian striatum. Physiology & Behavior, 29(4), 615–620.

    Article  Google Scholar 

  20. Liu, C., & Cerny, V. (1976). Release of grooming responses in basal ganglia and thalamic cats. Anatomical Record, 184(3), 464.

    Google Scholar 

  21. Strazielle, C., Lefevre, A., Jacquelin, C., & Lalonde, R. (2012). Abnormal grooming activity in Dab1 scm (scrambler) mutant mice. Behavioural Brain Research, 233(1), 24–28.

    Article  Google Scholar 

  22. Cromwell, H. C., & Berridge, K. C. (1996). Implementation of action sequences by a neostriatal site: A lesion mapping study of grooming syntax. Journal of Neuroscience, 16(10), 3444–3458.

    Google Scholar 

  23. Thompson, R., Huestis, P. W., Shea, C. N., Crinella, F. M., & Yu, Y. (1990). Brain structures important for solving a sawdust-digging problem in the rat. Physiology & Behavior, 48(1), 107–111.

    Article  Google Scholar 

  24. Aldridge, J. W., Berridge, K. C., & Rosen, A. R. (2004). Basal ganglia neural mechanisms of natural movement sequences. Canadian Journal of Physiology and Pharmacology, 82, 732–739.

    Article  Google Scholar 

  25. Holden, C. (1979). Paul MacLean and the triune brain. Science, 204(4397), 1066–1068.

    Article  Google Scholar 

  26. Cory, G. A., & Gardner, R. (Eds.). (2002). The evolutionary neuroethology of Paul MacLean: Convergences and frontiers. Westport: Greenwood Publishing Group.

    Google Scholar 

  27. Papez, J. W. (1937). A proposed mechanism of emotion. Archives of Neurology and Psychiatry, 38, 725–745.

    Article  Google Scholar 

  28. Price, J. L. (2003). Comparative aspects of amygdala connectivity. Annals of the New York Academy of Sciences, 985, 50–58.

    Article  Google Scholar 

  29. Laberge, F., Muhlenbrock-Lenter, S., Grunwald, W., & Roth, G. (2006). Evolution of the amygdala: New insights from studies in amphibians. Brain, Behavior and Evolution, 67, 177–187.

    Article  Google Scholar 

  30. Gray, T. S. (1999). Functional and anatomical relationships among the amygdala, basal forebrain, ventral striatum, and cortex. An integrative discussion. Annals of the New York Academy of Sciences, 29, 439–444.

    Article  Google Scholar 

  31. Sokolowski, K., & Corbin, J. G. (2012). Wired for behaviors: From development to function of innate limbic system circuitry. Frontiers in Molecular Neuroscience, 5(55), 1–15.

    Google Scholar 

  32. MacLean, P. D. (1985). Brain evolution relating to family, play, and the separation call. Archives of General Psychiatry, 42(4), 405–417.

    Article  Google Scholar 

  33. Panksepp, J. (2011). The basic emotional circuits of mammalian brains: Do animals have affective lives? Neuroscience & Biobehavioral Reviews, 35(9), 1791–1804.

    Article  Google Scholar 

  34. Panksepp, J. (2005). Affective consciousness: Core emotional feelings in animals and humans. Consciousness and Cognition, 14(1), 30–80.

    Article  Google Scholar 

  35. Panksepp, J. (2010). Affective neuroscience of the emotional Brain Mind: Evolutionary perspectives and implications for understanding depression. Dialogues in Clinical Neuroscience, 12(4), 533–544.

    Google Scholar 

  36. Kaas, J. H. (2011). Reconstructing the areal organization of the neocortex of the first mammals. Brain, Behavior and Evolution, 78(1), 7–21.

    Article  Google Scholar 

  37. Kaas, J. H. (2011). Neocortex in early mammals and its subsequent variations. Annals of the New York Academy of Sciences, 1225, 28–36.

    Article  Google Scholar 

  38. Dunbar, R. I. M. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution, 20(469–493).

    Google Scholar 

  39. Finlay, B. L., & Darlington, R. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268, 1578–1584.

    Article  Google Scholar 

  40. Seiffert, E. R. (2012). Early primate evolution in Afro-Arabia. Evolutionary Anthropology, 21(6), 239–253.

    Article  Google Scholar 

  41. Boesch, C. (2012). The ecology and evolution of social behavior and cognition in primates. In J. Vonk, & T. K. Shackelford (Eds.), The Oxford handbook of comparative evolutionary psychology (pp. 489–503). Oxford: Oxford University Press.

    Google Scholar 

  42. Reader, S. M., & Laland, K. N. (2002). Social Intelligence, innovation, and enhanced brain size in primates. Proceedings of the National Academy of Sciences, 99(7), 4436–4441.

    Article  Google Scholar 

  43. Reader, S. M., Hager, Y., & Laland, K. N. (2011). The evolution of primate general and cultural intelligence. Philosophical Transactions of the the Royal Society, B, 366(1567), 1017–1027.

    Article  Google Scholar 

  44. Burgdorf, J., & Panksepp, J. (2006). The neurobiology of positive emotions. Neuroscience and Biobehavioral Reviews, 30(2), 173–187.

    Article  Google Scholar 

  45. Groenewegen, H. J., & Uylings, H. B. M. (2000). The prefrontal cortex and the integration of sensory, limbic and autonomic information. Progress in Brain Research, 126, 3–28.

    Article  Google Scholar 

  46. Panksepp, J., Fuchs, T., & Iacobucci, P. (2011). The basic neuroscience of emotional experiences in mammals: The case of subcortical FEAR circuitry and implications for clinical anxiety. Applied Animal Behaviour Science, 129(1), 1–17.

    Article  Google Scholar 

  47. Groenewegen, H. J., Wright, C. I., & Uylings, H. B. M. (1997). The anatomical relationships of the prefrontal cortex with limbic structures and the basal ganglia. Journal of Psychopharmacology, 11(2), 99–106.

    Article  Google Scholar 

  48. Groenewegen, H. J., Berendse, H. W., & Wolters, J. G. (1990). The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: Evidence for parallel organization. Progress in Brain Research, 85, 95–116.

    Article  Google Scholar 

  49. Masterman, D. L., & Cummings, J. L. (1997). Frontal-subcortical circuits: The anatomic basis of executive, social and motivated behaviors. Journal of Psychopharmacology, 11(2), 107–114.

    Article  Google Scholar 

  50. Gee, D. G., Humphreys, K. L., Flannery, J., Goff, B., Telzer, E. H., Shapiro, M., et al. (2013). A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. Journal of Neuroscience, 33(10), 4584–4593.

    Article  Google Scholar 

  51. Petrides, M., & Pandya, D. N. (2002). Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. European Journal of Neuroscience, 16(2), 291–310.

    Article  Google Scholar 

  52. Roth, G., & Dicke, U. (2005). Evolution of the brain and intelligence. Trends in Cognitive Sciences, 9, 250–257.

    Article  Google Scholar 

  53. Franks, D. D. (2010). Neurosociology. New York: Springer.

    Book  Google Scholar 

  54. Schoenemann, P. T., Sheehan, M. J., & Glotzer, L. D. (2005). Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nature Neuroscience, 8(2), 242–252.

    Article  Google Scholar 

  55. Seyfarth, R. M., & Cheney, D. L. (2002). What are big brains for? Proceedings of the National Academy of Sciences, 99(7), 4141–4142.

    Article  Google Scholar 

  56. Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K., & Van Hoesen, G. W. (2001). Prefrontal cortex in humans and apes: A comparative study of area 10. American Journal of Physical Anthropology, 114, 224–241.

    Article  Google Scholar 

  57. Gabrieli, J. D. E., Poldrack, R. A., & Desmond, J. E. (1998). The role of left prefrontal cortex in language and memory. Proceedings of the National Academy of Sciences, 95(3), 906–913.

    Article  Google Scholar 

  58. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia output and cognition: Evidence from anatomical, behavioral, and clinical studies. Brain and Cognition, 42(2), 183–200.

    Article  Google Scholar 

  59. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research Reviews, 31(2–3), 236–250.

    Article  Google Scholar 

  60. Jarbo, K., & Verstynen, T. D. (2015). Converging structural and functional connectivity of orbitofrontal, dorsolateral prefrontal, and posterior parietal cortex in the human striatum. Journal of Neuroscience, 35(9), 3865–3878.

    Article  Google Scholar 

  61. Wolpert, L. (2007). Six impossible things before breakfast: The evolutionary origins of beliefs. New York: W.W. Norton & Co.

    Google Scholar 

  62. Flannelly, K. J. (2008). Review of the book Six impossible things before breakfast: The evolutionary origins of beliefs by L. Wolpert. Journal of Nervous and Mental Disease, 196(7), 581–582.

    Article  Google Scholar 

  63. Lewin, R. (2009). Human evolution: An illustrated introduction (5th ed.). Malden: Blackwell Publishing.

    Google Scholar 

  64. Tuttle, R.H. (2014). Apes and human evolution. Cambridge, MA: Harvard University Press.

    Book  Google Scholar 

  65. Wood, B. (2014). Human evolution: Fifty years after Homo habilis. Nature, 508(7494), 31–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Flannelly, K.J. (2017). Brain Evolution and Emotions. In: Religious Beliefs, Evolutionary Psychiatry, and Mental Health in America. Religion, Spirituality and Health: A Social Scientific Approach, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-52488-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52488-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52487-0

  • Online ISBN: 978-3-319-52488-7

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics