Skip to main content

The Utility of Multiplex Assays for Identification of Proteomic Signatures in Psychiatry

  • Chapter
  • First Online:
Proteomic Methods in Neuropsychiatric Research

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 974))

Abstract

As substantial efforts are being made to identify biological markers of psychiatric illnesses, it is becoming clear that clinically useful accuracy will require larger sets of readouts that potentially span different technological platforms. For discovery of proteomic biomarkers, simultaneous measurement of analytes in small sample quantities has developed into a widely used technology of similar quality as the respective single-plex assays. Multiplex assay systems therefore hold promise for biomarker discovery and development in many complex disease areas including psychiatry. However, analysis of the derived data is subject to substantial challenges that may impede the possibility of obtaining meaningful findings. This chapter discusses potential applications of multiplexed assay technologies during biomarker development and highlights potential challenges for machine learning analysis of derived data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cosgrove VE, Suppes T (2013) Informing DSM-5: biological boundaries between bipolar I disorder, schizoaffective disorder, and schizophrenia. BMC Med 11:127

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gutstein HB, Morris JS, Annangudi SP, Sweedler JV (2008) Microproteomics: analysis of protein diversity in small samples. Mass Spectrom Rev 27:316–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM et al (2011) High density DNA methylation array with singleCpG site resolution. Genomics 98:288–295

    Article  CAS  PubMed  Google Scholar 

  4. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  Google Scholar 

  5. Martins-de-Souza D, Turck CW (2012) Proteomic biomarkers for psychiatric disorders: a progress update. Biomark Med 6:189–192

    Article  CAS  PubMed  Google Scholar 

  6. Patel S (2012) Role of proteomics in biomarker discovery and psychiatric disorders: current status, potentials, limitations and future challenges. Expert Rev Proteomics 9:249–265

    Article  CAS  PubMed  Google Scholar 

  7. Hughes GF (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory 14:55–63. doi:10.1109/TIT.1968.1054102

    Article  Google Scholar 

  8. Elshal MF, McCoy JP (2006) Multiplex bead array assays: performance evaluation and comparison of sensitivity to ELISA. Methods 38:317–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. dupont NC, Wang K, Wadhwa PD, Culhane JF, Nelson EL (2005) Validation and comparison of luminex multiplex cytokine analysis kits with ELISA: determinations of a panel of nine cytokines in clinical sample culture supernatants. J Reprod Immunol 66:175–191

    Article  CAS  PubMed  Google Scholar 

  10. Tighe PJ, Ryder RR, Todd I, Fairclough LC (2015) ELISA in the multiplex era: potentials and pitfalls. Proteomics Clin Appl 9:406–422

    Article  CAS  PubMed  Google Scholar 

  11. Surinova S, Choi M, Tao S, Schüffler PJ, Chang CY, Clough T et al (2015) Prediction of colorectal cancer diagnosis based on circulating plasma proteins. EMBO Mol Med 7:1166–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schwarz E, Izmailov R, Spain M, Barnes A, Mapes JP, Guest PC et al (2010) Validation of a blood-based laboratory test to aid in the confirmation of a diagnosis of schizophrenia. Biomark Insights 12:39–47

    Google Scholar 

  13. Schwarz E, Guest PC, Rahmoune H, Harris LW, Wang L, Leweke FM et al (2012) Identification of a biological signature for schizophrenia in serum. Mol Psychiatry 17:494–502

    Article  CAS  PubMed  Google Scholar 

  14. Chan MK, Krebs MO, Cox D, Guest PC, Yolken RH, Rahmoune H et al (2015) Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset. Transl Psychiatry 5:e601. doi:10.1038/tp.2015.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferreira AJ, Figueiredo MAT (2012) Efficient feature selection filters for high-dimensional data. Pattern Recogn Lett 33:1794–1804. http://dx.doi.org/10.1016/j.patrec.2012.05.019

    Article  Google Scholar 

  16. http://web.engr.oregonstate.edu/~sinisa/research/publications/FeatureSelection_PAMI09.pdf

  17. Mizejewski GJ, Lindau-Shepard B, Pass KA (2013) Newborn screening for autism: in search of candidate biomarkers. Biomark Med 7:247–260. doi:10.2217/bmm.12.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lustgarten JL, Visweswaran S, Bowser RP, Hogan WR, Gopalakrishnan V (2009) Knowledge-based variable selection for learning rules from proteomic data. BMC Bioinformatics 10(Suppl 9):S16. doi:10.1186/1471-2105-10-S9-S16

    Article  PubMed  PubMed Central  Google Scholar 

  19. Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ et al (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14:365–376. doi:10.1038/nrn3475

    Article  CAS  PubMed  Google Scholar 

  20. Bird KD, Hall W (2006) Statistical power in psychiatric research. Aust N Z J Psychiatry 40:704–711

    Article  Google Scholar 

  21. http://www.tandfonline.com/doi/abs/10.3109/00048678609161331

  22. Mollenhauer B, Parnetti L, Rektorova I, Kramberger MG, Pikkarainen M, Schulz-Schaeffer WJ et al (2015) Biological confounders for the values of cerebrospinal fluid proteins in Parkinson's disease and related disorders. J Neurochem 139(Suppl 1):290–317

    Google Scholar 

  23. Shawe-Taylor J, Anthony M, Biggs NL (1993) Bounding sample size with the Vapnik-Chervonenkis dimension. Discret Appl Math 42:65–73

    Article  Google Scholar 

  24. Beleites C, Neugebauer U, Bocklitz T, Krafft C, Popp J (2013) Sample size planning for classification models. Anal Chim Acta 760:25–33

    Article  CAS  PubMed  Google Scholar 

  25. Ein-Dor L, Zuk O, Domany E (2006) Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci USA 103:5923–5928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim SY (2009) Effects of sample size on robustness and prediction accuracy of a prognostic gene signature. BMC Bioinformatics 10:147. doi:10.1186/1471-2105-10-147

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ioannidis JPA (2008) Why most discovered true associations are inflated. Epidemiology 19:640–648

    Article  PubMed  Google Scholar 

  28. Berendt B (ed) (2016) Machine Learning and Knowledge Discovery in Databases, 1st edn. In: Bringmann B, Fromont E, Garriga G, Miettinen P, Tatti N, Tresp V (Series Eds). Springer; ISBN-10: 3319461303

    Google Scholar 

  29. Ellington AA, Kullo IJ, Bailey KR, Klee GG (2009) Measurement and quality control issues in multiplex protein assays: a case study. Clin Chem 55:1092–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Frangou S, Schwarz E, Meyer-Lindenberg A, IMAGEMEND (2016) Identifying multimodal signatures associated with symptom clusters: the example of the IMAGEMEND project. World Psychiatry 15:179–180

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schwarz E, van Beveren NJ, Ramsey J, Leweke FM, Rothermundt M, Bogerts B et al (2014) Identification of subgroups of schizophrenia patients with changes in either immune or growth factor and hormonal pathways. Schizophr Bull 40:787–795

    Article  CAS  PubMed  Google Scholar 

  32. Califano A, Butte AJ, Friend S, Ideker T, Schadt E (2012) Leveraging models of cell regulation and GWAS data in integrative network-based association studies. Nat Genet 44:841–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang K, Li M, Hakonarson H (2010) Analysing biological pathways in genome-wide association studies. Nat Rev Genet 11:843–854

    Article  CAS  PubMed  Google Scholar 

  34. Bersanelli M, Mosca E, Remondini D, Giampieri E, Sala C, Castellani G et al (2016) Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinformatics 17(Suppl 2):15. doi:10.1186/s12859-015-0857-9

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lim WK, Wang K, Lefebvre C, Califano A (2007) Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks. Bioinformatics 23:i282–i238

    Article  CAS  PubMed  Google Scholar 

  36. Pollack AZ, Perkins NJ, Mumford SL, Ye A, Schisterman EF (2013) Correlated biomarker measurement error: An important threat to inference in environmental epidemiology. Am J Epidemiol 177:84–92

    Article  CAS  PubMed  Google Scholar 

  37. Clarke DC, Morris MK, Lauffenburger DA (2010) Normalization and statistical analysis of multiplexed bead-based immunoassay data using mixed-effects modeling. Mol Cell Proteomics 12:245–262

    Article  Google Scholar 

  38. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE et al (2010) Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 11:733–739

    Article  CAS  PubMed  Google Scholar 

  39. Blankley RT, Fisher C, Westwood M, North R, Baker PN, Walker MJ et al (2013) A label-free selected reaction monitoring workflow identifies a subset of pregnancy specific glycoproteins as potential predictive markers of early-onset pre-eclampsia. Mol Cell Proteomics 12:3148–3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Soneson C, Gerster S, Delorenzi M (2014) Batch effect confounding leads to strong bias in performance estimates obtained by cross-validation. PLoS One 9:e100335

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the DFG Emmy-Noether-Program SCHW 1768/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Schwarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chen, J., Guest, P.C., Schwarz, E. (2017). The Utility of Multiplex Assays for Identification of Proteomic Signatures in Psychiatry. In: Guest, P. (eds) Proteomic Methods in Neuropsychiatric Research. Advances in Experimental Medicine and Biology(), vol 974. Springer, Cham. https://doi.org/10.1007/978-3-319-52479-5_8

Download citation

Publish with us

Policies and ethics