Skip to main content

Littoral Drift and Coastline Evolution on Mixed Sand and Gravel Coasts

  • Chapter
  • First Online:
Morphodynamics of Mediterranean Mixed Sand and Gravel Coasts

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

  • 387 Accesses

Abstract

The evolution of the coastline is mainly driven by the gradients in the longshore sediment transport (LST). These gradients are mostly influenced by the incoming waves and the morphology of the coastline. Traditionally, the coastline is assumed to be quasi-rectilinear, and the formulations are not valid for curved shorelines. This chapter presents a new expression that not only accounts for the curvature of the shoreline but also includes the variability of the sediment size that is typically found along Mediterranean coasts. It is later applied to the study sites described in Chap. 2, and the relation between LST trends and coastline evolution is analyzed and discussed for both sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aarninkhof, S.G.J., Holman, R.A.: Monitoring the nearshore with video. Backscatter 10, 8–11 (1999)

    Google Scholar 

  2. Apotsos, A., Raubenheimer, B., Elgar, S., Guza, R.T.: Wave-driven setup and along- shore flows observed onshore of a submarine canyon. J. Geophys. Res. 113, C07,025 (2008)

    Google Scholar 

  3. Ashton, A., Murray, A.B.: High-angle wave instability and emergent shoreline shapes: 1 Modeling of sand waves, flying spits, and capes. J. Geophys. Res. 111, F04,011 (2006). doi:10.1029/2005JF000423

  4. Ashton, A., Murray, A.B.: High-angle wave instability and emergent shoreline shapes: 2 Wave climate analysis and comparisons to nature. J. Geophys. Res. 111, F04,012 (2006). doi:10.1029/2005JF000422

  5. Bayram, A., Larson, M., Hanson, H.: A new formula for the total longshore sediment transport rate. Coast. Eng. 540(9), 700–710 (2007)

    Article  Google Scholar 

  6. Bergillos, R.J., Delgado-Rodríguez, C., López-Ruiz, A., Millares, A., Ortega-Sánchez, M., Losada, M.A.: Recent human-induced coastal changes in the Guadalfeo river deltaic system (southern Spain). In: Proceedings of the 36th IAHR-International Association for Hydro-Environment Engineering and Research World Congress (2015)

    Google Scholar 

  7. Bergillos, R.J., López-Ruiz, A., Ortega-Sánchez, M., Masselink, G., Losada, M.A.: Implications of delta retreat on wave propagation and longshore sediment transport—Guadalfeo case study (southern Spain). Mar. Geol. 382, 1–16 (2016)

    Article  Google Scholar 

  8. Booij, N., Ris, R.C., Holthuijsen, L.H.: A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res.: Oceans 104(C4), 7649–7666 (1999)

    Article  Google Scholar 

  9. Camus, P., Mendez, F.J., Medina, R.: A hybrid efficient method to downscale wave climate to coastal areas. Coast. Eng. 58(9), 851–862 (2011)

    Article  Google Scholar 

  10. Camus, P., Menéndez, M., Méndez, F.J., Izaguirre, C., Espejo, A., Cánovas, V., Pérez, J., Rueda, A., Losada, I.J., Medina, R.: A weather-type statistical downscaling framework for ocean wave climate. J. Geophys. Res. C: Oceans 119(11), 7389–7405 (2014)

    Article  Google Scholar 

  11. Dean, R.G., Dalrymple, R.A.: Coastal Processes with Engineering Applications. Cambridge University Press (2002)

    Google Scholar 

  12. Fredsøe, J., Deigaard, R.: Mechanics of Coastal Sediment Transport. World Scientific (1992)

    Google Scholar 

  13. Gorrell, L., Raubenheimer, B., Elgar, S., Guza, R.T.: SWAN predictions of waves observed in shallow water onshore of complex bathymetry. Coast. Eng. 58, 510–516 (2011)

    Article  Google Scholar 

  14. Hanson, H.: GENESIS—A generalized shoreline change numerical model. J. Coast. Res. 50(1), 1–27 (1989)

    Google Scholar 

  15. Harley, M.D., Turner, I.L., Short, A.D., Ranasinghe, R.: Assessment and integration of conventional, RTK-GPS and image-derived beach survey methods for daily to decadal coastal monitoring. Coast. Eng. 580(2), 194–205 (2011)

    Article  Google Scholar 

  16. Holland, K.T., Holman, R.A., Lippmann, T.C., Stanley, J., Plant, N.: Practical use of video imagery in nearshore oceanographic field studies. IEEE J. Oceanic Eng. 22(1), 81–92 (1997)

    Article  Google Scholar 

  17. Hydraulics, W.: UNIBEST, a software suite for simulation of sediment transport processes and related morphodynamics of beach profiles and coastline evolution. Model description and validation. Technical report, Delft hydraulics Report H454.14 (1992)

    Google Scholar 

  18. Inman, D.L., Bagnold, R.A.: Littoral Processes. In: The Sea, Vol. 3. Wiley, New York (1963)

    Google Scholar 

  19. Kamphuis, J.W.: Alongshore sediment transport rate. J. Waterw Port Coast. Ocean Eng. 117(6), 624 (1991)

    Article  Google Scholar 

  20. Kamphuis, J.W.: Alongshore transport of sand. In: Proceedings of the 28th International Conference on Coastal Engineering, pp. 2330–2345. ASCE (2002)

    Google Scholar 

  21. Komar, P.D.: Beach Processes and Sedimentation, 2nd edn. Prentice-Hall, Upper Saddle River, NJ (1998)

    Google Scholar 

  22. Larson, M., Kraus, N.C.: Prediction of cross-shore sediment transport at different spatial and temporal scales. Mar. Geol. 126(1–4), 111–127 (1995)

    Article  Google Scholar 

  23. Longuet-Higgins, M.S.: Longshore currents generated by obliquely incident sea waves, 1. J. Geophys. Res. 75(33), 6778–6789 (1970)

    Article  Google Scholar 

  24. López-Ruiz, A., Ortega-Sánchez, M., Baquerizo, A., Losada, M.A.: Short and medium- term evolution of shoreline undulations on curvilinear coasts. Geomorphology 159, 189–200 (2012)

    Article  Google Scholar 

  25. López-Ruiz, A., Ortega-Sánchez, M., Baquerizo, A., Losada, M.A.: A note on along- shore sediment transport on weakly curvilinear coasts and its implications. Coast. Eng. 88, 143–153 (2014)

    Article  Google Scholar 

  26. López-Ruiz, A., Ortega-Sánchez, M., Baquerizo, A., Navidad, D., Losada, M.A.: Nonuniform alongshore sediment transport induced by coastline curvature. In: 33th Coastal Engineering Conference, Electronic edition, pp. 3046–3052. Texas Digital Library (2012)

    Google Scholar 

  27. López-Ruiz, A., Solari, S., Ortega-Sánchez, M., Losada, M.A.: A simple approximation for wave refraction—Application to the assessment of the nearshore wave directionality. Ocean Modell. 96, 324–333 (2015)

    Article  Google Scholar 

  28. McLaren, P., Bowles, D.: The effects of sediment transport on grain-size distributions. J. Sediment. Petrol. 55, 457–470 (1985)

    Google Scholar 

  29. Mil-Homens, J., Ranasinghe, R., de Vries, J.V.T., Stive, M.J.F.: Re-evaluation and improvement of three commonly used bulk longshore sediment transport formulas. Coast. Eng. 75, 29–39 (2013)

    Article  Google Scholar 

  30. Noda, E.K.: Wave-induced nearshore circulation. J. Geophys. Res. 79, 4097–4106 (1974)

    Article  Google Scholar 

  31. Ortega-Sánchez, M., Baquerizo, A., Losada, M.A.: On the development of large-scale cuspate features on a semi-reflective beach: Carchuna beach, Southern Spain. Mar. Geol. 198, 209–223 (2003)

    Article  Google Scholar 

  32. Ortega-Sánchez, M., Bramato, S., Quevedo, E., Mans, C., Losada, M.A.: Atmospheric-hydrodynamic coupling in the nearshore. Geophys. Res. Lett. 35, L23,601 (2008)

    Google Scholar 

  33. Ortega-Sánchez, M., Lobo, F.J., López-Ruiz, A., Losada, M.A., Fernández-Salas, L.M.: The influence of shelf-indenting canyons and infralittoral prograding wedges on coastal morphology: the Carchuna system in Southern Spain. Mar. Geol. 347, 107–122 (2014)

    Article  Google Scholar 

  34. Ortega-Sánchez, M., Quevedo, E., Baquerizo, A., Losada, M.A.: Comment on “High-angle wave instability and emergent shoreline shapes: 1 Modeling of sand waves, flying spits, and capes by Ashton, Andrew D., Brad Murray, A". J. Geophys. Res. 113, F01,005 (2008)

    Google Scholar 

  35. Quevedo, E., Baquerizo, A., Losada, M.A., Ortega-Sánchez, M.: Large-scale coastal features generated by atmospheric pulses and associated edge waves. Mar. Geol. 247, 226–236 (2008)

    Article  Google Scholar 

  36. Ranasinghe, R., Pattiaratchi, C.: The seasonal closure of tidal inlets: Wilson inlet—a case study. Coast. Eng. 370(1), 37–56 (1999)

    Article  Google Scholar 

  37. Reeve, D., Chadwick, A., Fleming, C.: Coastal Engineering: Processes, Theory and Design Practice (2nd edn.). Spon Press (2012)

    Google Scholar 

  38. Schoonees, J.S., Theron, A.K.: Review of the field-data base for longshore sediment transport. Coast. Eng. 190(1–2), 1–25 (1993)

    Article  Google Scholar 

  39. Short, A.D.: Handbook of Beach and Shoreface Morphodynamics. Wiley (2000)

    Google Scholar 

  40. U.S.A.C.E.: Shore Protection Manual. U.S. Government Printing Office, Washington, D.C. (1984)

    Google Scholar 

  41. del Valle, R., Medina, R., Losada, M.A.: Dependence of coefficient K on grain size. J. Waterw. Port Coast. Ocean Eng. 119(5), 568–574 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Spanish Ministry of Economy and Competitiveness (Projects CTM2012-32439 and BIA2015-65598-P). The second author was funded by the Spanish Ministry of Economy and Competitiveness (Research Contract BES-2013-062617 and Mobility Grant EEBB-I-16-11009). The authors are indebted to Gerd Masselink for his valuable suggestions and comments. Prof. Baquerizo is also acknowledged for helping in the development the LST expression for curvilinear coasts. We also thank Fátima Pereira for her support creating the bathymetric scenarios of Carchuna Beach and Cristóbal Rodríguez-Delgado for his assistance with the bathymetric data processing of Playa Granada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ortega-Sánchez .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Ortega-Sánchez, M., Bergillos, R.J., López-Ruiz, A., Losada, M.A. (2017). Littoral Drift and Coastline Evolution on Mixed Sand and Gravel Coasts. In: Morphodynamics of Mediterranean Mixed Sand and Gravel Coasts. SpringerBriefs in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-52440-5_4

Download citation

Publish with us

Policies and ethics