Advertisement

Probability Experiments and Green’s Functions in Classical Event Spaces

  • Tom Rother
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 938)

Abstract

It was already mentioned in Sect. 1.3 that in contrast to Quantum Mechanics probabilities are of less conceptual importance in classical physics. In this chapter I will therefore propose an abstract probability state concept in two- and four-dimensional but classical event spaces which can be related to special stochastic sources and interactions.

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Pocketbook of Mathematical Functions. Verlag Harri Deutsch, Thun, Frankfurt/Main (1984)MATHGoogle Scholar
  2. Aspect, A., Grangier, P., Roger, G.: Experimental tests of Bell’s inequality using time-varying analyzers. Phy. Rev. Lett. 49, 1804 (1982)ADSCrossRefGoogle Scholar
  3. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)Google Scholar
  4. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 38, 696 (1935)ADSCrossRefMATHGoogle Scholar
  5. Bohr, N.: The unity of human knowledge. In: Atomic Physics and Human Knowledge. Wiley, New York (1958)Google Scholar
  6. Burkhardt, C.E., Leventhal, J.J.: Foundations of Quantum Physics. Springer, New York (2008)CrossRefMATHGoogle Scholar
  7. Carroll, S.M.: Spacetime and Geometry: An Introduction to General Relativity. Addison-Wesley, München (2003)Google Scholar
  8. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23 (15), 880 (1969)ADSCrossRefGoogle Scholar
  9. Dirac, P.A.M.: The quantum theory of the electron. Roy. Soc. Proc. A 117, 610 (1928)Google Scholar
  10. Duffy, D.G.: Green’s Functions with Applications. Chapman & Hall/CRC, Boca Raton/London/New York/Washington (2001)CrossRefMATHGoogle Scholar
  11. Dyson, F.: George green and physics. Phys. World 6, 33 (1993)CrossRefGoogle Scholar
  12. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)ADSCrossRefMATHGoogle Scholar
  13. Elmore, W.C., Heald, M.A.: Physics of Waves. Dover Publication, New York (1985)Google Scholar
  14. Feynman, R.P.: The Character of Physical Law. MIT Press, Cambridge (1967)Google Scholar
  15. Feynman, R.P., Hibbs, A.R.: Path Integrals and Quantum Mechanics. McGraw-Hill, New York (1965)MATHGoogle Scholar
  16. Feynman, R.P., Leighton, R.B., Sands, M.L.: The Feynman Lectures on Physics, Vol. 2. Addison-Wesley, München (1989)MATHGoogle Scholar
  17. Fikioris, J.G.: Singular integrals in the source region. J. Electromagn. Waves Appl. 18, 1505 (2004)MathSciNetCrossRefGoogle Scholar
  18. Graff, K.F.: Wave Motion in Elastic Solids. Dover Publication, New York (1991)MATHGoogle Scholar
  19. Green, G.: An essay on the application of mathematical analysis to the theories of electricity and magnetism. J. Reine Angewand. Math. 39, 73 (1850); 44, 356 (1852); 47, 161 (1854)Google Scholar
  20. Heisenberg, W.: Die beobachtbaren Gr”o”sen in der Theorie der Elementarteilchen. Z. Phys. 120, 513 (1943)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. Hilbert, D.: Die Grundlagen der Physik. Mathematische Annalen 92, 1–32 (1924)CrossRefGoogle Scholar
  22. Hilgevoord, J., Atkinson, D.: Time in Quantum Mechanics. Clarendon Press, Oxford (2011)Google Scholar
  23. Hönl, H., Maue A.W., Westphal, K.: Theorie der Beugung, in Handbuch der Physik Band 25/1, S. Fl”ugge (Hrsg.). Springer, Berlin (1961)Google Scholar
  24. Jönsson, C.: Elektronenninterferenzen an mehreren k”unstlich hergestellten Feinspalten. Zeitschrift f”ur Physik. 161, 454 (1961)Google Scholar
  25. Johansson, H., Kosower, D.A., Larsen, K.J.: An Overview of Maximal Unitarity at Two Loops. arXiv:1212.2132v1 (2012)Google Scholar
  26. Kadanoff, L.P., Baym, G.: Quantum Statistical Mechanics. W. A. Benjamin, Inc., California (1962)MATHGoogle Scholar
  27. Kraeft, W.-D., Kremp, D., Ebeling, W., Roepke, G.: Quantum Statistics of Charged Particle Systems. Akademie-Verlag, Berlin (1986)CrossRefGoogle Scholar
  28. Linton, C.M.: The Green’s function for the two-dimensional Helmholtz equation in periodic domains. J. Eng. Math. 33, 377 (1998)MathSciNetCrossRefMATHGoogle Scholar
  29. McMullin, E.: The origin of the field concept in physics. Phys. Perspect. 4, 13 (2002)ADSMathSciNetCrossRefGoogle Scholar
  30. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, Vol. 1 and 2. McGraw-Hill, New York (1953)MATHGoogle Scholar
  31. Morse, P.M., Uno Ingard, K.: Theoretical Acoustics. Princeton Univ. Press, Princeton (1986)Google Scholar
  32. Müller-Kirsten, H.J.W.: Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral. World Scientific, London (2006)CrossRefMATHGoogle Scholar
  33. Newton, R.G.: Optical theorem and beyond. Am. J. Phys. 44, 639 (1976)ADSCrossRefGoogle Scholar
  34. Nussenzveig, H.M.: High-frequency scattering by an impenetrable sphere. Ann. Phys. 34, 23 (1965)ADSMathSciNetCrossRefGoogle Scholar
  35. Nussenzveig, H.M.: Causality and Dispersion Relations. Academic Press, New York and London (1972)MATHGoogle Scholar
  36. Parker, B.T., Petrosian, V.: Fokker-Planck equation of stochastic acceleration: Green’s functions and boundary conditions. Astrophys. J. 446, 699 (1995)ADSCrossRefGoogle Scholar
  37. Rother, T., Kahnert, M.: Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations, 2nd. edn. Springer, Berlin/Heidelberg (2013)Google Scholar
  38. Saxon, D.S.: Tensor scattering matrix for the electromagnetic field. Phys. Rev. 100, 1771 (1955)ADSMathSciNetCrossRefMATHGoogle Scholar
  39. Schroedinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Phil. Soc. 31, 555 (1935)ADSCrossRefGoogle Scholar
  40. Schwinger, J.: Quantum Mechanics: Symbolism of Atomic Measurements. Springer, Berlin/Heidelberg (2001)CrossRefMATHGoogle Scholar
  41. Sommerfeld, A.: Partial Differential Equations in Physics. Academic Press, New York (1949)MATHGoogle Scholar
  42. Stumpf, H., Schuler, J.: Elektrodynamik. Verlag Vieweg, Braunschweig (1973)CrossRefGoogle Scholar
  43. Twersky, V.: On the scattering of waves by an infinite grating. IRE Trans. Antennas Propag. 4, 330 (1956)ADSCrossRefGoogle Scholar
  44. Van Bladel, J.: Singular Electromagnetic Fields and Sources. Clarendon Press, Oxford (1991)Google Scholar
  45. Wheeler, J.A.: On the mathematical description of light nuclei by the method of resonating group structure. Phys. Rev. 52, 1107 (1937)ADSCrossRefMATHGoogle Scholar
  46. Wladimirow, W.S.: Gleichungen der mathematischen Physik. VEB Deutscher Verlag der Wissenschaften, Berlin (1972)Google Scholar
  47. Zhu, E.Y., et al.: Direct generation of polarization-entangled photon pairs in a poled fiber. Phys. Rev. Lett. 108, doi: 213902 (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tom Rother
    • 1
  1. 1.German Aerospace CenterNeustrelitzGermany

Personalised recommendations