Skip to main content

Green’s Functions of Classical Fields

  • Chapter
  • First Online:
Green’s Functions in Classical Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 938))

  • 3358 Accesses

Abstract

Solving boundary value problems of electromagnetic fields was the historical starting point for the development of the Green’s function formalism. The person after whom these functions were named—George Green—published an essay in 1828 in which he introduced special functions to solve certain boundary value problems of the Poisson equation (Green 1850, 1852, and 1854). Unfortunately, this essay sank into oblivion shortly after its publication until it was rediscovered in 1846 by the later Lord Kelvin. In a paper, published in 1993, F. Dyson considered the invention of these functions as a methodical revolution in physics which was as important as the invention of computers in our days (Dyson 1993).

Metaphysics is the desperate attempt of the physicist to escape Faraday’s cage of rationality

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz, M., Stegun, I.A. (eds.): Pocketbook of Mathematical Functions. Verlag Harri Deutsch, Thun, Frankfurt/Main (1984)

    MATH  Google Scholar 

  • Aspect, A., Grangier, P., Roger, G.: Experimental tests of Bell’s inequality using time-varying analyzers. Phy. Rev. Lett. 49, 1804 (1982)

    Article  ADS  Google Scholar 

  • Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  • Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 38, 696 (1935)

    Article  ADS  MATH  Google Scholar 

  • Bohr, N.: The unity of human knowledge. In: Atomic Physics and Human Knowledge. Wiley, New York (1958)

    Google Scholar 

  • Burkhardt, C.E., Leventhal, J.J.: Foundations of Quantum Physics. Springer, New York (2008)

    Book  MATH  Google Scholar 

  • Carroll, S.M.: Spacetime and Geometry: An Introduction to General Relativity. Addison-Wesley, München (2003)

    Google Scholar 

  • Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23 (15), 880 (1969)

    Article  ADS  Google Scholar 

  • Dirac, P.A.M.: The quantum theory of the electron. Roy. Soc. Proc. A 117, 610 (1928)

    Google Scholar 

  • Duffy, D.G.: Green’s Functions with Applications. Chapman & Hall/CRC, Boca Raton/London/New York/Washington (2001)

    Book  MATH  Google Scholar 

  • Dyson, F.: George green and physics. Phys. World 6, 33 (1993)

    Article  Google Scholar 

  • Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  • Elmore, W.C., Heald, M.A.: Physics of Waves. Dover Publication, New York (1985)

    Google Scholar 

  • Feynman, R.P.: The Character of Physical Law. MIT Press, Cambridge (1967)

    Google Scholar 

  • Feynman, R.P., Hibbs, A.R.: Path Integrals and Quantum Mechanics. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  • Feynman, R.P., Leighton, R.B., Sands, M.L.: The Feynman Lectures on Physics, Vol. 2. Addison-Wesley, München (1989)

    MATH  Google Scholar 

  • Fikioris, J.G.: Singular integrals in the source region. J. Electromagn. Waves Appl. 18, 1505 (2004)

    Article  MathSciNet  Google Scholar 

  • Graff, K.F.: Wave Motion in Elastic Solids. Dover Publication, New York (1991)

    MATH  Google Scholar 

  • Green, G.: An essay on the application of mathematical analysis to the theories of electricity and magnetism. J. Reine Angewand. Math. 39, 73 (1850); 44, 356 (1852); 47, 161 (1854)

    Google Scholar 

  • Heisenberg, W.: Die beobachtbaren Gr”o”sen in der Theorie der Elementarteilchen. Z. Phys. 120, 513 (1943)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hilbert, D.: Die Grundlagen der Physik. Mathematische Annalen 92, 1–32 (1924)

    Article  Google Scholar 

  • Hilgevoord, J., Atkinson, D.: Time in Quantum Mechanics. Clarendon Press, Oxford (2011)

    Google Scholar 

  • Hönl, H., Maue A.W., Westphal, K.: Theorie der Beugung, in Handbuch der Physik Band 25/1, S. Fl”ugge (Hrsg.). Springer, Berlin (1961)

    Google Scholar 

  • Jönsson, C.: Elektronenninterferenzen an mehreren k”unstlich hergestellten Feinspalten. Zeitschrift f”ur Physik. 161, 454 (1961)

    Google Scholar 

  • Johansson, H., Kosower, D.A., Larsen, K.J.: An Overview of Maximal Unitarity at Two Loops. arXiv:1212.2132v1 (2012)

    Google Scholar 

  • Kadanoff, L.P., Baym, G.: Quantum Statistical Mechanics. W. A. Benjamin, Inc., California (1962)

    MATH  Google Scholar 

  • Kraeft, W.-D., Kremp, D., Ebeling, W., Roepke, G.: Quantum Statistics of Charged Particle Systems. Akademie-Verlag, Berlin (1986)

    Book  Google Scholar 

  • Linton, C.M.: The Green’s function for the two-dimensional Helmholtz equation in periodic domains. J. Eng. Math. 33, 377 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • McMullin, E.: The origin of the field concept in physics. Phys. Perspect. 4, 13 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, Vol. 1 and 2. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  • Morse, P.M., Uno Ingard, K.: Theoretical Acoustics. Princeton Univ. Press, Princeton (1986)

    Google Scholar 

  • Müller-Kirsten, H.J.W.: Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral. World Scientific, London (2006)

    Book  MATH  Google Scholar 

  • Newton, R.G.: Optical theorem and beyond. Am. J. Phys. 44, 639 (1976)

    Article  ADS  Google Scholar 

  • Nussenzveig, H.M.: High-frequency scattering by an impenetrable sphere. Ann. Phys. 34, 23 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  • Nussenzveig, H.M.: Causality and Dispersion Relations. Academic Press, New York and London (1972)

    MATH  Google Scholar 

  • Parker, B.T., Petrosian, V.: Fokker-Planck equation of stochastic acceleration: Green’s functions and boundary conditions. Astrophys. J. 446, 699 (1995)

    Article  ADS  Google Scholar 

  • Rother, T., Kahnert, M.: Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations, 2nd. edn. Springer, Berlin/Heidelberg (2013)

    Google Scholar 

  • Saxon, D.S.: Tensor scattering matrix for the electromagnetic field. Phys. Rev. 100, 1771 (1955)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Schroedinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Phil. Soc. 31, 555 (1935)

    Article  ADS  Google Scholar 

  • Schwinger, J.: Quantum Mechanics: Symbolism of Atomic Measurements. Springer, Berlin/Heidelberg (2001)

    Book  MATH  Google Scholar 

  • Sommerfeld, A.: Partial Differential Equations in Physics. Academic Press, New York (1949)

    MATH  Google Scholar 

  • Stumpf, H., Schuler, J.: Elektrodynamik. Verlag Vieweg, Braunschweig (1973)

    Book  Google Scholar 

  • Twersky, V.: On the scattering of waves by an infinite grating. IRE Trans. Antennas Propag. 4, 330 (1956)

    Article  ADS  Google Scholar 

  • Van Bladel, J.: Singular Electromagnetic Fields and Sources. Clarendon Press, Oxford (1991)

    Google Scholar 

  • Wheeler, J.A.: On the mathematical description of light nuclei by the method of resonating group structure. Phys. Rev. 52, 1107 (1937)

    Article  ADS  MATH  Google Scholar 

  • Wladimirow, W.S.: Gleichungen der mathematischen Physik. VEB Deutscher Verlag der Wissenschaften, Berlin (1972)

    Google Scholar 

  • Zhu, E.Y., et al.: Direct generation of polarization-entangled photon pairs in a poled fiber. Phys. Rev. Lett. 108, doi: 213902 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rother, T. (2017). Green’s Functions of Classical Fields. In: Green’s Functions in Classical Physics. Lecture Notes in Physics, vol 938. Springer, Cham. https://doi.org/10.1007/978-3-319-52437-5_3

Download citation

Publish with us

Policies and ethics