Skip to main content

Lymphodynamics

  • Chapter
  • First Online:
Lymphedema
  • 2847 Accesses

Abstract

As a tributary of the arteriovenous blood circulation, the lymphatic vasculature plays an exquisite, finely modulated role in the regulation of body fluid homeostasis and interstitial fluid balance.

  • It is estimated that approximately one-sixth of the body’s total volume resides in the interstitial space.

  • The lymphatic circulation is responsible for unidirectional fluid transport.

  • By definition, without any initial change in composition, the interstitial fluid becomes lymph once it enters the initial lymphatics.

  • Under resting conditions, it is estimated that there are 2–3 l/day of lymph formed in the human body.

  • Entry of interstitial fluid into the lymphatic capillary is primarily governed by the prevailing interstitial fluid pressure.

  • Any physical force that increases interstitial fluid pressure will increase lymph flow.

  • Lymph flow becomes maximal when interstitial pressure is slightly higher than the atmospheric pressure.

  • The lymphatic circulation relies upon the effects of both intrinsic and extrinsic pumps.

  • Cyclical changes in prevailing pressure gradients provide the dynamic forces that favor fluid entry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Highlighted References

  1. Zawieja DC. Contractile physiology of lymphatics. Lymphat Res Biol. 2009;7(2):87–96.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Miteva DO, Rutkowski JM, Dixon JB, Kilarski W, Shields JD, Swartz MA. Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ Res. 2010;106(5):920–31.

    Article  CAS  PubMed  Google Scholar 

  3. Wiig H, Swartz MA. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev. 2012;92(3):1005–60.

    Article  CAS  PubMed  Google Scholar 

  4. Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Lymphatic pumping: mechanics, mechanisms and malfunction. J Physiol. 2016;594(20):5749–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cintolesi V, Stanton AW, Bains SK, Cousins E, Peters AM, Purushotham AD, et al. Constitutively enhanced lymphatic pumping in the upper limbs of women who later develop breast cancer-related lymphedema. Lymphat Res Biol. 2016;14(2):50–61.

    Article  CAS  PubMed  Google Scholar 

References

  1. Hall J. Guyton and hall textbook of medical physiology. 12th ed. Philadelphia: Saunders; 2010.

    Google Scholar 

  2. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010;87(2):198–210.

    Article  CAS  PubMed  Google Scholar 

  3. Aspelund A, Robciuc MR, Karaman S, Makinen T, Alitalo K. Lymphatic system in cardiovascular medicine. Circ Res. 2016;118(3):515–30.

    Article  CAS  PubMed  Google Scholar 

  4. Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993;73(1):1–78.

    Article  CAS  PubMed  Google Scholar 

  5. Negrini D, Moriondo A, Mukenge S. Transmural pressure during cardiogenic oscillations in rodent diaphragmatic lymphatic vessels. Lymphat Res Biol. 2004;2(2):69–81.

    Article  PubMed  Google Scholar 

  6. Moriondo A, Mukenge S, Negrini D. Transmural pressure in rat initial subpleural lymphatics during spontaneous or mechanical ventilation. Am J Physiol Heart Circ Physiol. 2005;289(1):H263–9.

    Article  CAS  PubMed  Google Scholar 

  7. Grimaldi A, Moriondo A, Sciacca L, Guidali ML, Tettamanti G, Negrini D. Functional arrangement of rat diaphragmatic initial lymphatic network. Am J Physiol Heart Circ Physiol. 2006;291(2):H876–85.

    Article  CAS  PubMed  Google Scholar 

  8. Breslin JW, Yuan SY, Wu MH. VEGF-C alters barrier function of cultured lymphatic endothelial cells through a VEGFR-3-dependent mechanism. Lymphat Res Biol. 2007;5(2):105–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dixon JB, Raghunathan S, Swartz MA. A tissue-engineered model of the intestinal lacteal for evaluating lipid transport by lymphatics. Biotechnol Bioeng. 2009;103(6):1224–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Olszewski WL, Engeset A. Intrinsic contractility of prenodal lymph vessels and lymph flow in human leg. Am J Phys. 1980;239(6):H775–83.

    CAS  Google Scholar 

  11. Desai P, Williams AG Jr, Prajapati P, Downey HF. Lymph flow in instrumented dogs varies with exercise intensity. Lymphat Res Biol. 2010;8(3):143–8.

    Article  PubMed  Google Scholar 

  12. Rockson SG. Physiological mechanisms that predispose to the development of breast cancer-associated lymphedema. Lymphat Res Biol. 2016;14(2):49.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley G. Rockson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rockson, S.G. (2018). Lymphodynamics. In: Lee, BB., Rockson, S., Bergan, J. (eds) Lymphedema. Springer, Cham. https://doi.org/10.1007/978-3-319-52423-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52423-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52421-4

  • Online ISBN: 978-3-319-52423-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics