Skip to main content

Hereditary and Familial Lymphedemas

  • Chapter
  • First Online:
Lymphedema
  • 2824 Accesses

Abstract

Progress in identifying causal mutations has reshaped the way primary lymphedema is managed. Classifying primary lymphedema simply as congenital, praecox, or tarda is no longer adequate. Mutation testing is the way forward, but deep phenotyping is still needed to help discriminate different forms of primary lymphedema for which causal genes are still not known. A proposed algorithm can help with diagnosis. How best to approach those forms of primary lymphedema, which are familial, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Highlighted References

  1. Connell F, Gordon K, Brice G, et al. The classification and diagnostic algorithm for primary lymphatic dysplasia: an update from 2010 to include molecular findings. Clin Genet. 2013;84(4):303–14.

    Article  CAS  PubMed  Google Scholar 

  2. Alders M, Al-Gazali L, Cordeiro I, et al. Hennekam syndrome can be caused by FAT4 mutations and be allelic to Van Maldergem syndrome. Hum Genet. 2014;133(9):1161–7.

    Article  CAS  PubMed  Google Scholar 

  3. Fotiou E, Martin-Almedina S, Simpson MA, Lin S, Gordon K, Brice G, et al. Novel mutations in PIEZO1 cause an autosomal recessive generalized lymphatic dysplasia with non-immune hydrops fetalis. Nat Commun. 2015;6:8085.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Martin-Almedina S, Martinez-Corral I, Holdhus R, Vicente A, Fotiou E, Lin S, et al. EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. J Clin Invest. 2016;126(8):3080–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ostergaard P, Simpson MA, Connell FC, et al. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat Genet. 2011;43(10):929–31.

    Article  CAS  PubMed  Google Scholar 

References

  1. Tekola Ayele F, Adeyemo A, Finan C, et al. HLA class II locus and susceptibility to podoconiosis. N Engl J Med. 2012;366(13):1200–8.

    Article  PubMed  Google Scholar 

  2. Newman B, Lose F, Kedda MA, et al. Possible genetic predisposition to lymphedema after breast cancer. Lymphat Res Biol. 2012;10(1):2–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Atton G, Gordon K, Brice G, Keeley V, Riches K, Ostergaard P, et al. The lymphatic phenotype in Turner syndrome: an evaluation of nineteen patients and literature review. Eur J Hum Genet. 2015;12:1634–9.

    Article  Google Scholar 

  4. Joyce S, Gordon K, Brice G, Ostergaard P, Nagaraja R, Short J, et al. The lymphatic phenotype in Noonan and Cardiofaciocutaneous syndrome. Eur J Hum Genet. 2015;24(5):690–6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Opitz JM. On congenital lymphedema. Am J Med Genet. 1986;24(1):127–9.

    Article  CAS  PubMed  Google Scholar 

  6. Jeffries GH, Chapman A, Sleisenger MH. Low-fat diet in intestinal lymphangiectasia. Its effect on albumin metabolism. N Engl J Med. 1964;270:761–6.

    Article  CAS  PubMed  Google Scholar 

  7. Hennekam RC, Geerdink RA, Hamel BC, et al. Autosomal recessive intestinal lymphangiectasia and lymphedema, with facial anomalies and mental retardation. Am J Med Genet. 1989;34(4):593–600.

    Article  CAS  PubMed  Google Scholar 

  8. Bellini C, Mazzella M, Arioni C, et al. Hennekam syndrome presenting as nonimmune hydrops fetalis, congenital chylothorax, and congenital pulmonary lymphangiectasia. Am J Med Genet A. 2003;120A(1):92–6.

    Article  PubMed  Google Scholar 

  9. Alders M, Hogan BM, Gjini E, et al. Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat Genet. 2009;41(12):1272–4.

    Article  CAS  PubMed  Google Scholar 

  10. Jeltsch M, Jha SK, Tvorogov D, Anisimov A, Leppänen VM, Holopainen T, et al. CCBE1 enhances lymphangiogenesis via aA disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation. 2014;129(19):1962–71.

    Article  CAS  PubMed  Google Scholar 

  11. Irrthum A, Devriendt K, Chitayat D, Matthijs G, Glade C, Steijlen PM, et al. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Genet. 2003;72(6):1470–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Karkkainen MJ, Ferrell RE, Lawrence EC, et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet. 2000;25(2):153–9.

    Article  CAS  PubMed  Google Scholar 

  13. Connell FC, Ostergaard P, Carver C, Brice G, Williams N, Mansour S, Mortimer PS, Jeffery S; Lymphoedema Consortium. Analysis of the coding regions of VEGFR3 and VEGFC in Milroy disease and other primary lymphoedemas. Hum Genet 2009;124(6):625–31.

    Google Scholar 

  14. Mellor RH, Hubert CE, Stanton AWB, et al. Lymphatic dysfunction, not aplasia, underlies Milroy disease. Microcirculation. 2010;17(4):281–96.

    Article  CAS  PubMed  Google Scholar 

  15. Brice G, Child AH, Evans A, et al. Milroy disease and the VEGFR-3 mutation phenotype. J Med Genet. 2005;42(2):98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gordon K, Schulte D, Brice G, et al. Mutation in vascular endothelial growth factor-C, a ligand for vascular endothelial growth factor receptor-3, is associated with autosomal dominant Milroy-like primary lymphedema. Circ Res. 2013;112(6):956.

    Article  CAS  PubMed  Google Scholar 

  17. Kuchler AM, Gjini E, Peterson-Maduro J, Cancilla B, Wolburg H, Schulte-Merker S. Development of the zebrafish lymphatic system requires VEGFC signaling. Curr Biol. 2006;16(12):1244–8.

    Article  PubMed  Google Scholar 

  18. Aagenaes O, Sigstad H, Bjorn-Hansen R. Lymphoedema in hereditary recurrent cholestasis from birth. Arch Dis Child. 1970;45:690–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ostergaard P, Simpson MA, Mendola A, et al. Mutations in KIF11 cause autosomal-dominant microcephaly variably associated with congenital lymphedema and chorioretinopathy. Am J Hum Genet. 2012;90(2):356–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bull LN. Mapping of the locus for cholestasis-lymphedema syndrome (Aagenaes syndrome) to a 6.6-CM interval on chromosome 15q. Am J Hum Genet. 2000;67:994–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shah S, Conlin LK, Gomez L, Aagenaes Ø, Eiklid K, Knisely AS, et al. CBE1 mutation in two siblings, one manifesting lymphedema-cholestasis syndrome, and the other, fetal hydrops. PLoS One. 2013;8:e75770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brice G, Mansour S, Bell R, et al. Analysis of the phenotypic abnormalities in lymphoedema-distichiasis syndrome in 74 patients with FOXC2 mutations or linkage to 16q24. J Med Genet. 2002;39(7):478–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fang JM, Dagenais SL, Erickson RP, et al. Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet. 2000;67(6):1382–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Petrova TV, Karpanen T, Norrmen C, et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med. 2004;10(9):974–81.

    Article  CAS  PubMed  Google Scholar 

  25. Mellor RH, Brice G, Stanton AWB, et al. Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb. Circulation. 2007;115(14):1912–20.

    Article  CAS  PubMed  Google Scholar 

  26. Meige H. Dystrophie oedemateuse hereditaire. Presse Méd. 1898;6:341–3.

    Google Scholar 

  27. Rezaie T, Ghoroghchian R, Bell R, et al. Primary non-syndromic lymphoedema (Meige disease) is not caused by mutations in FOXC2. Eur J Hum Genet. 2008;16(3):300–4.

    Article  CAS  PubMed  Google Scholar 

  28. Ostergaard P, Simpson MA, Brice G, et al. Rapid identification of mutations in GJC2 in primary lymphoedema using whole exome sequencing combined with linkage analysis with delineation of the phenotype. J Med Genet. 2011;48(4):251–5.

    Article  CAS  PubMed  Google Scholar 

  29. Emberger JM, Navarro M, Dejean M, Izarn P. Deaf mutism, lymphedema of the lower limbs and hematological anomalies (acute-leukemia, cytopenia) with autosomal dominant transmission. J Genet Hum. 1979;27(3):237–45.

    CAS  PubMed  Google Scholar 

  30. Mansour S, Connell F, Steward C, Ostergaard P, Brice G, Smithson S, et al. Lymphoedema Research Consortium. Emberger syndrome-primary lymphedema with myelodysplasia: report of seven new cases. Am J Med Genet A. 2010;152A(9):2287–96.

    Article  PubMed  Google Scholar 

  31. Spinner MA, Sanchez LA, Hsu AP, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014;123(6):809–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter S. Mortimer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Mortimer, P.S., Gordon, K., Brice, G., Mansour, S. (2018). Hereditary and Familial Lymphedemas. In: Lee, BB., Rockson, S., Bergan, J. (eds) Lymphedema. Springer, Cham. https://doi.org/10.1007/978-3-319-52423-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52423-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52421-4

  • Online ISBN: 978-3-319-52423-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics