Skip to main content

Near-Infrared Fluorescent Lymphography

  • Chapter
  • First Online:
Lymphedema

Abstract

Near-infrared fluorescent lymphography or indocyanine green (ICG) lymphography is becoming popular in the management of lymphedema. ICG lymphography can clearly visualize superficial lymph flows in real time without radiation exposure. ICG lymphography findings change from normal «linear» pattern to abnormal «dermal backflow (DB)» patterns (mild DB, «splash» pattern; moderate DB, «stardust» pattern; severe DB, «diffuse» pattern) with progression of lymphedema. Splash pattern represents reversible change; on the other hand «stardust» and «diffuse» patterns represent irreversible change. ICG lymphography-based DB stages [arm DB (ADB) stage, leg DB (LDB) stage, genital DB (GDB) stage, and facial DB (FDB) stage] allow pathophysiological severity staging for secondary lymphedema. ICG lymphography also allows classification of primary lymphedema: proximal DB (PDB), distal DB (DDB), less enhancement (LE), and no enhancement (NE) patterns. ICG velocity, representing lymph pump function, decreases with lymphedema progression. ICG lymphography is also used as pre- and intraoperative navigation for lymphatic surgeries such as lymphaticovenular anastomosis, lymph node transfer, and liposuction. In «linear» pattern region, a surgeon can easily find lymphatic vessels. Progression of ICG lymphography pattern represents lymphosclerosis progression. Dynamic ICG lymphography, dual-phase lymphography, allows pathophysiological severity staging, evaluation of lymph pump function, and navigation for lymphatic surgery with only one ICG injection. Dynamic ICG lymphography is useful for the evaluation and treatments of primary and secondary lymphedema.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Highlighted References

  1. Yamamoto T, Narushima M, Doi K, et al. Characteristic indocyanine green lymphography findings in lower extremity lymphedema: the generation of a novel lymphedema severity staging system using dermal backflow patterns. Plast Reconstr Surg. 2011;127(5):1979–86.

    Article  CAS  PubMed  Google Scholar 

  2. Yamamoto T, Matsuda N, Doi K, et al. The earliest finding of indocyanine green (ICG) lymphography in asymptomatic limbs of lower extremity lymphedema patients secondary to cancer treatment: the modified dermal backflow (DB) stage and concept of subclinical lymphedema. Plast Reconstr Surg. 2011;128(4):314e–21e.

    Article  CAS  PubMed  Google Scholar 

  3. Yamamoto T, Yamamoto N, Doi K, et al. Indocyanine green (ICG)-enhanced lymphography for upper extremity lymphedema: a novel severity staging system using dermal backflow (DB) patterns. Plast Reconstr Surg. 2011;128(4):941–7.

    Article  CAS  PubMed  Google Scholar 

  4. Yamamoto T, Narushima M, Yoshimatsu H, et al. Dynamic indocyanine green lymphography for breast cancer-related arm lymphedema. Ann Plast Surg. 2013;73(6):706–9. [Epub ahead of print].

    Google Scholar 

  5. Yamamoto T, Yoshimatsu H, Narushima M, et al. Indocyanine green lymphography findings in primary leg lymphedema. Eur J Vasc Endovasc Surg. 2014;49(1):95–102. [Epub ahead of print].

    Google Scholar 

References

  1. Zhibin Y, Quanyong L, Libo C, et al. The role of radionuclide lymphoscintigraphy in extremity lymphedema. Ann Nucl Med. 2006;20:341–4.

    Article  Google Scholar 

  2. Narushima M, Yamamoto T, Ogata F, et al. Indocyanine green lymphography findings in limb lymphedema. J Reconstr Microsurg. 2015;49(1):95–102. [epub ahead of print].

    Google Scholar 

  3. Yamamoto T, Yamamoto N, Yoshimatsu H, et al. Indocyanine green lymphography for evaluation of genital lymphedema in secondary lower extremity lymphedema patients. J Vasc Surg: Venous and Lym Dis. 2013;1(4):400–5.

    Google Scholar 

  4. Yamamoto T, Iida T, Matsuda N, et al. Indocyanine green (ICG)-enhanced lymphography for evaluation of facial lymphoedema. J Plast Reconstr Aesthet Surg. 2011;64(11):1541–4.

    Article  PubMed  Google Scholar 

  5. Yamamoto T, Yamamoto N, Azuma S, et al. Near-infrared illumination system-integrated microscope for supermicrosurgical lymphaticovenular anastomosis. Microsurgery. 2013;34(1):23–7.

    Article  PubMed  Google Scholar 

  6. Yamamoto T, Yamamoto N, Numahata T, et al. Navigation lymphatic supermicrosurgery for the treatment of cancer-related peripheral lymphedema. Vasc Endovasc Surg. 2014;48(2):139–43.

    Article  Google Scholar 

  7. Yamamoto T, Yoshimatsu H, Koshima I. Navigation lymphatic supermicrosurgery for iatrogenic lymphorrhea: supermicrosurgical lymphaticolymphatic anastomosis and lymphaticovenular anastomosis under indocyanine green lymphography navigation. J Plast Reconstr Aesthet Surg. 2014;67(11):1573–9. [epub ahead of print].

    Google Scholar 

  8. Yamamoto T, Yamamoto N, Narushima M. Lymphaticovenular anastomosis with guidance of ICG lymphography. J Jpn Coll Angiol. 2012;52:327–31.

    Article  Google Scholar 

  9. Yamamoto T, Narushima M, Yoshimatsu H, et al. Indocyanine green velocity: Lymph transportation capacity deterioration with progression of lymphedema. Ann Plast Surg. 2013;71(5):59–594.

    Google Scholar 

  10. Yamamoto T, Narushima M, Kikuchi K, et al. Lambda-shaped anastomosis with intravascular stenting method for safe and effective lymphaticovenular anastomosis. Plast Reconstr Surg. 2011;127(5):1987–92.

    Article  CAS  PubMed  Google Scholar 

  11. Yamamoto T, Yoshimatsu H, Narushima M, et al. A modified side-to-end lymphaticovenular anastomosis. Microsurgery. 2013;33(2):130–3.

    Article  PubMed  Google Scholar 

  12. Yamamoto T, Narushima M, Yoshimatsu H, et al. Minimally invasive lymphatic supermicrosurgery (MILS): indocyanine green lymphography-guided simultaneous multi-site lymphaticovenular anastomoses via millimeter skin incisions. Ann Plast Surg. 2014;72(1):67–70.

    Article  CAS  PubMed  Google Scholar 

  13. Yamamoto T, Narushima M, Koshima I. ICG lymphography and lymphaticovenular anastomosis for diagnosis and treatment of lymphedema, fascicular turnover flap for nerve reconstruction. Jpn J Orthop Traumatol. 2012;55(4):357–64.

    Google Scholar 

  14. Yamamoto T, Yamamoto N, Narushima M, et al. Evaluation of peripheral lymphedema using ICG lymphography. Jpn J Phlebol. 2013;24(1):57–62.

    Article  Google Scholar 

  15. Lee BB, Antignani P, Baroncelli TA, et al. IUA-ISVI consensus for diagnosis guideline of chronic lymphedema of the limbs. Int Angiol. 2014; 34(4):311–32. [Epub ahead of print].

    Google Scholar 

  16. Yamamoto T, Yamamoto N, Furuya M, et al. Genital lymphedema score: genital lymphedema severity scoring system based on subjective symptoms. Ann Plast Surg. 2016;77(1):119–21.

    Article  CAS  PubMed  Google Scholar 

  17. Yamamoto T, Koshima I, Yoshimatsu H, et al. Simultaneous multi-site lymphaticovenular anastomoses for primary lower extremity and genital lymphoedema complicated with severe lymphorrhea. J Plast Reconstr Aesthet Surg. 2011;64(6):812–5.

    Article  PubMed  Google Scholar 

  18. Yamamoto T, Yoshimatsu H, Yamamoto N, et al. Side-to-end lymphaticovenular anastomosis through temporary lymphatic expansion. PLoS One. 2013;8(3):e59523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamamoto T, Yamamoto N, Yamashita M, et al. Efferent lymphatic vessel anastomosis (ELVA): supermicrosurgical efferent lymphatic vessel-to-venous anastomosis for the prophylactic treatment of subclinical lymphedema. Ann Plast Surg. 2014;76(4):424–7. [Epub ahead of print].

    Google Scholar 

  20. Yamamoto T, Chen WF, Yamamoto N, et al. Technical simplification of the supermicrosurgical side-to-end lymphaticovenular anastomosis using the parachute technique. Microsurgery. 2014;35(2):129–34. [epub ahead of print].

    Google Scholar 

  21. Yamamoto T, Yoshimatsu H, Narushima M, et al. Split intravascular stents for side-to-end lymphaticovenular anastomosis. Ann Plast Surg. 2013;71(5):538–40.

    Article  CAS  PubMed  Google Scholar 

  22. Yamamoto T, Yoshimatsu H, Narushima M, et al. Sequential anastomosis for lymphatic supermicrosurgery: multiple lymphaticovenular anastomoses on one venule. Ann Plast Surg. 2014;73(1):46–9.

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto T, Koshima I. Supermicrosugical anastomosis of superficial lymphatic vessel to deep lymphatic vessel for a patient with cellulitis-induced chronic localized leg lymphedema. Microsurgery. 2014;35(1):68–71. [epub ahead of print].

    Google Scholar 

  24. Yamamoto T, Yoshimatsu H, Yamamoto N, et al. Modified lambda-shaped lymphaticovenular anastomosis with supermicrosurgical lymphoplasty technique for a cancer-related lymphedema patient. Microsurgery. 2014;34(4):308–10.

    Article  PubMed  Google Scholar 

  25. Yamamoto T, Koshima I. Subclinical lymphedema: understanding is the clue to decision making. Plast Reconstr Surg. 2013;132(3):472e–3e.

    Article  CAS  PubMed  Google Scholar 

  26. Yamamoto T, Yoshimatsu H, Yamamoto N. Complete lymph flow reconstruction: a free vascularized lymph node true perforator flap transfer with efferent lymphaticolymphatic anastomosis. J Plast Reconstr Aesthet Surg. 2016;69(9):1227–33.

    Article  PubMed  Google Scholar 

  27. Yamamoto T, Yamashita M, Furuya M, et al. Lymph preserving lipectomy under indocyanine green lymphography navigation. J Plast Reconstr Aesthet Surg. 2015;68(1):136–7.

    Article  PubMed  Google Scholar 

  28. Yamamoto T, Hayashi A. Versatility of indocyanine green lymphography navigation for lymphatic surgeries. J Plast Reconstr Aesthet Surg. 2016;69(8):e162–3. [epub ahead of print].

    Google Scholar 

  29. Akita S, Mitsukawa N, Rikihisa N, et al. Early diagnosis and risk factors for lymphedema following lymph node dissection for gynecologic cancer. Plast Reconstr Surg. 2013;131(2):283–9.

    Article  CAS  PubMed  Google Scholar 

  30. Yamamoto T, Matsuda N, Todokoro T, et al. Lower extremity lymphedema index: a simple method for severity evaluation of lower extremity lymphedema. Ann Plast Surg. 2011;67(6):637–40.

    Article  CAS  PubMed  Google Scholar 

  31. Yamamoto T, Yamamoto N, Hara H, et al. Upper Extremity Lymphedema (UEL) Index: a simple method for severity evaluation of upper extremity lymphedema. Ann Plast Surg. 2013;70(1):47–9.

    Article  CAS  PubMed  Google Scholar 

  32. Yamamoto N, Yamamoto T, Hayashi N, et al. Arm volumetry versus upper extremity lymphedema index: validity of upper extremity lymphedema index for body-type corrected arm volume evaluation. Ann Plast Surg. 2014;76(6):697–9. [Epub ahead of print].

    Google Scholar 

  33. Yamamoto T, Yamamoto N, Hayashi N, et al. Practicality of lower extremity lymphedema index: lymphedema index versus volumetry-based evaluations for body-type corrected lower extremity volume evaluation. Ann Plast Surg. 2016;77(1):115–8. [epub ahead of print].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takumi Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Yamamoto, T. (2018). Near-Infrared Fluorescent Lymphography. In: Lee, BB., Rockson, S., Bergan, J. (eds) Lymphedema. Springer, Cham. https://doi.org/10.1007/978-3-319-52423-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52423-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52421-4

  • Online ISBN: 978-3-319-52423-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics