Skip to main content

Lymph Formation and Composition

  • Chapter
  • First Online:
Lymphedema

Abstract

This chapter will survey our current knowledge on lymph formation from the extracellular fluid, lymphatic circulation, and overall lymph proteomic composition during physiological and pathological states. Generation of the lymphatic fluid depends on hydrostatic and osmotic pressure gradients operating in the capillary beds. Lymph movement toward the draining node hinges on the pumping activity of the lymphangions and the presence of unidirectional valves. The lymph proteomic composition is generated by a combination of ultrafiltrated plasma proteins with proteins and molecules generated from the metabolic and catabolic activities of each drained anatomical site. Importantly, lymph proteins and peptides contribute to the MHCII-presented peptidome displayed by nodal dendritic cells. Altogether, these analyses have brought new attention to the role of the lymphatic fluid in transporting the «immunological self» and have indicated how physiological and pathological conditions affect lymph composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Highlighted References

  1. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010;87(19):210.

    Google Scholar 

  2. Clement C, Aphkhazava D, Nieves E, Callaway M, Olszewski W, Rotzschke O, et al. Protein expression profiles of human lymph and plasma mapped by 2D-DIGE and 1D SDS-PAGE coupled with nanoLC-ESI-MS/MS bottom- up proteomics. J Proteomics. 2013;78:172–87.

    Article  CAS  PubMed  Google Scholar 

  3. D’Alessandro A, Dzieciatkowska M, Peltz ED, Moore EE, Jordan JR, Silliman CC, et al. Dynamic changes in rat mesenteric lymph proteins following trauma using label-free mass spectrometry. Shock. 2014;42:509–17.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell. 2010;140:460–76.

    Article  CAS  PubMed  Google Scholar 

  5. Clement C, Cannizzo C, Nastke ES, Sahu M-D, Olszewski R, Miller W, et al. An expanded self-antigen peptidome is carried by the human lymph as compared to the plasma. PLoS One. 2010;5:e9863.

    Article  PubMed  PubMed Central  Google Scholar 

References

  1. Santambrogio L. Immunology of the lymphatic system. 1st ed. New York: Springer; 2013.

    Book  Google Scholar 

  2. Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19:312–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Michel CS. The formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years. Exp Physiol. 1997;82:1–30.

    Article  CAS  PubMed  Google Scholar 

  4. Levick. Capillary filtration-absorption balance reconsidered in light of dynamic extravascular factors. Exp Physiol. 1991;76:825–57.

    Article  CAS  PubMed  Google Scholar 

  5. Squire J, Chew M, Nneji M, Neal G, Barry C, Michel J, et al. Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J Struct Biol. 2001;136:239–55.

    Article  CAS  PubMed  Google Scholar 

  6. Arkill KP, Knupp C, Michel CC, Neal CR, Qvortrup K, Rostgaard J, et al. Similar endothelial glycocalyx structures in microvessels from a range of mammalian tissues: evidence for a common filtering mechanism? Biophys J. 2011;101:1046–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hu X, Adamson RH, Liu B, Curry FE, Weinbaum S. Starling forces that oppose filtration after tissue oncotic pressure is increased. Am J Physiol Heart Circ Physiol. 2000;279:H1724–36.

    Article  CAS  PubMed  Google Scholar 

  8. Adamson RH, Lenz JF, Zhang X, Adamson GN, Weinbaum S, Curry FE. Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol. 2004;557:889–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Veenstra TD, Conrads TP, Hood BL, Avellino AM, Ellenbogen RG, Morrison RS. Biomarkers: mining the biofluid proteome. Mol Cell Proteomics. 2005;4:409–18.

    Article  CAS  PubMed  Google Scholar 

  10. Dzieciatkowska M, D’Alessandro A, Moore EE, Wohlauer M, Banerjee A, Silliman CC, et al. Lymph is not a plasma ultrafiltrate: a proteomic analysis of injured patients. Shock. 2014;42(6):485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dzieciatkowska M, Wohlauer MV, Moore EE, Damle S, Peltz E, Campsen J, et al. Proteomic analysis of human mesenteric lymph. Shock. 2011;35:331–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fang J-F, Shih L-Y, Yuan K-C, Fang K-Y, Hwang T-L, Hsieh S-Y. Proteomic analysis of post-hemorrhagic shock mesenteric lymph. Shock. 2010;34:291–8.

    Article  CAS  PubMed  Google Scholar 

  13. Mittal A, Middleditch M, Ruggiero K, Buchanan CM, Jullig M, Loveday B, et al. The proteome of rodent mesenteric lymph. Am J Physiol Gastrointest Liver Physiol. 2008;295:G895–903.

    Article  CAS  PubMed  Google Scholar 

  14. Zurawel A, Moore EE, Peltz ED, Jordan JR, Damle S, Dzieciatkowska M, et al. Proteomic profiling of the mesenteric lymph after hemorrhagic shock: differential gel electrophoresis and mass spectrometry analysis. Clin Proteomics. 2010;8:1.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Goldfinch GM, Smith WD, Imrie L, McLean K, Inglis NF, Pemberton AD. The proteome of gastric lymph in normal and nematode infected sheep. Proteomics. 2008;8:1909–18.

    Article  CAS  PubMed  Google Scholar 

  16. Nguyen VPKH, Hanna G, Rodrigues N, Pizzuto K, Yang E, Van Slyke P, et al. Differential proteomic analysis of lymphatic, venous, and arterial endothelial cells extracted from bovine mesenteric vessels. Proteomics. 2010;10:1658–72.

    Article  CAS  PubMed  Google Scholar 

  17. Meens MJ, Sabine A, Petrova TV, Kwak BR. Connexins in lymphatic vessel physiology and disease. FEBS Lett. 2014;588:1271–7.

    Article  CAS  PubMed  Google Scholar 

  18. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204:2349–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pflicke H, Sixt M. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J Exp Med. 2009;206:2925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thomas SN, Rutkowski JM, Pasquier M, Kuan EL, Alitalo K, Randolph GJ, et al. Impaired humoral immunity and tolerance in K14-VEGFR-3-Ig mice that lack dermal lymphatic drainage. J Immunol. 2012;1950(189):2181–90.

    Article  Google Scholar 

  21. Platt AM, Rutkowski JM, Martel C, Kuan EL, Ivanov S, Swartz MA, et al. Normal dendritic cell mobilization to lymph nodes under conditions of severe lymphatic hypoplasia. J Immunol. 2013;1950(190):4608–20.

    Article  Google Scholar 

  22. Gashev AA. Lymphatic vessels: pressure- and flow-dependent regulatory reactions. Ann N Y Acad Sci. 2008;1131:100–9.

    Article  PubMed  Google Scholar 

  23. Gashev AA, Zawieja DC. Hydrodynamic regulation of lymphatic transport and the impact of aging. Pathophysiol Off J Int Soc Pathophysiol ISP. 2010;17:277–87.

    Google Scholar 

  24. Vittet D. Lymphatic collecting vessel maturation and valve morphogenesis. Microvasc Res. 2014;96:31–7.

    Article  PubMed  Google Scholar 

  25. Schmid-Schönbein GW. Microlymphatics and lymph flow. Physiol Rev. 1990;70:987–1028.

    Article  PubMed  Google Scholar 

  26. Muthuchamy M, Zawieja D. Molecular regulation of lymphatic contractility. Ann N Y Acad Sci. 2008;1131:89–99.

    Article  PubMed  Google Scholar 

  27. Smith JB, McIntosh GH, Morris B. The traffic of cells through tissues: a study of peripheral lymph in sheep. J Anat. 1970;107:87–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Swartz MA, Randolph GJ. Introduction to the special issue on lymphangiogenesis in inflammation. Angiogenesis. 2014;17:323–4.

    Article  PubMed  Google Scholar 

  29. Rahbar E, Akl T, Coté GL, Moore JE, Zawieja DC. Lymph transport in rat mesenteric lymphatics experiencing Edemagenic stress. Microcirculation. 2014;21:359–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cromer WE, Zawieja SD, Tharakan B, Childs EW, Newell MK, Zawieja DC. The effects of inflammatory cytokines on lymphatic endothelial barrier function. Angiogenesis. 2014;17:395–406.

    Article  CAS  PubMed  Google Scholar 

  31. Shields JD. Lymphatics: at the interface of immunity, tolerance, and tumor metastasis. Microcirc. 2011;1994(18):517–31.

    Article  Google Scholar 

  32. Gertler F, Condeelis J. Metastasis: tumor cells becoming MENAcing. Trends Cell Biol. 2011;21:81–90.

    Article  CAS  PubMed  Google Scholar 

  33. Shin K, Kataru RP, Park HJ, Kwon B-I, Kim TW, Hong YK, et al. TH2 cells and their cytokines regulate formation and function of lymphatic vessels. Nat Commun. 2015;6:6196.

    Article  CAS  PubMed  Google Scholar 

  34. Angeli V, Ginhoux F, Llodrà J, Quemeneur L, Frenette PS, Skobe M, et al. Cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity. 2006;24:203–15.

    Article  CAS  PubMed  Google Scholar 

  35. Marchiò S, Astanina E, Bussolino F. Emerging lymphae for the fountain of life. EMBO J. 2013;32:609–11.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hägerling R, Pollmann C, Andreas M, Schmidt C, Nurmi H, Adams RH, et al. A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J. 2013;32:629–44.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Srinivasan RS, Escobedo N, Yang Y, Interiano A, Dillard ME, Finkelstein D, et al. The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev. 2014;28:2175–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng W, Aspelund A, Alitalo K. Lymphangiogenic factors, mechanisms, and applications. J Clin Invest. 2014;124:878–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Flister MJ, Wilber A, Hall KL, Iwata C, Miyazono K, Nisato RE, et al. Inflammation induces lymphangiogenesis through up- regulation of VEGFR-3 mediated by NF-kappaB and Prox1. Blood. 2010;115:418–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Srinivasan RS, Geng X, Yang Y, Wang Y, Mukatira S, Studer M, et al. The nuclear hormone receptor coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev. 2010;24:696–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leak LV, Liotta LA, Krutzsch H, Jones M, Fusaro VA, Ross SJ, et al. Proteomic analysis of lymph. Proteomics. 2004;4:753–65.

    Article  CAS  PubMed  Google Scholar 

  42. Mittal A, Phillips ARJ, Middleditch M, Ruggiero K, Loveday B, Delahunt B, et al. The proteome of mesenteric lymph during acute pancreatitis and implications for treatment. JOP J Pancreas. 2009;10:130–42.

    Google Scholar 

  43. Clement CC, Santambrogio L. The lymph self-antigen repertoire. Front Immunol. 2013;4:424.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Magnotti LJ, Upperman JS, Xu DZ, Lu Q, Deitch EA. Gut-derived mesenteric lymph but not portal blood increases endothelial cell permeability and promotes lung injury after hemorrhagic shock. Ann Surg. 1998;228:518–27.

    Google Scholar 

  45. Omenn GS, States DJ, Adamski M, Blackwell TW, Menon R, Hermjakob H, et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics. 2005;5:3226–45.

    Article  CAS  PubMed  Google Scholar 

  46. Omenn GS, Aebersold R, Paik Y-K. 7th HUPO World Congress of Proteomics: launching the second phase of the HUPOPlasma Proteome Project PPP-2 16-20 August 2008, Amsterdam, The Netherlands. Proteomics. 2009;9:4–6.

    Article  CAS  PubMed  Google Scholar 

  47. Clement CC, Rotzschke O, Santambrogio L. The lymph as a pool of self-antigens. Trends Immunol. 2011;32:6–11.

    Article  CAS  PubMed  Google Scholar 

  48. Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5:1–13.

    Article  CAS  PubMed  Google Scholar 

  49. Korpos E, Wu C, Sorokin L. Multiple roles of the extracellular matrix in inflammation. Curr Pharm Des. 2009;15:1349–57.

    Article  CAS  PubMed  Google Scholar 

  50. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196:395–406.

    Google Scholar 

  51. Shiomi T, Lemaître V, D’Armiento J, Okada Y. Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases. Pathol Int. 2010;60:477–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gaggar A, Jackson PL, Noerager BD, O’Reilly PJ, McQuaid DB, Rowe SM, et al. A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in chronic neutrophilic inflammation. J Immunol. 2008;180:5662–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wohlauer, M. Moore, E. E. Silliman, C. C. Fragoso, M. Gamboni, F. Harr, J. Accurso, F. Wright, F. Haenel, J. 2012. Fullerton, D. et al. Nebulized hypertonic saline attenuates acute lung injury following trauma and hemorrhagic shock via inhibition of matrix metalloproteinase-13. Crit Care Med 40:2647–2653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Naranjo V, Villar M, Martín-Hernando MP, Vidal D, Höfle U, Gortazar C, et al. Proteomic and transcriptomic analyses of differential stress/inflammatory responses in mandibular lymph nodes and oropharyngeal tonsils of European wild boars naturally infected with Mycobacterium Bovis. Proteomics. 2007;7:220–31.

    Article  CAS  PubMed  Google Scholar 

  55. Popova TG, Espina V, Zhou W, Mueller C, Liotta L, Popov SG. Whole proteome analysis of mouse lymph nodes in cutaneous anthrax. PLoS One. 2014;9:e110873.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Oveland E, Karlsen TV, Haslene-Hox H, Semaeva E, Janaczyk B, Tenstad O, et al. Proteomic evaluation of inflammatory proteins in rat spleen interstitial fluid and lymph during LPS-induced systemic inflammation reveals increased levels of ADAMST1. J Proteome Res. 2012;11:5338–49.

    Article  CAS  PubMed  Google Scholar 

  57. Haenen S, Clynen E, De Vooght V, Schoofs L, Nemery B, Hoet PHM, et al. Proteome changes in auricular lymph nodes and serum after dermal sensitization to toluene diisocyanate in mice. Proteomics. 2012;12:3548–58.

    Article  CAS  PubMed  Google Scholar 

  58. Diebel LN, Liberati DM, Ledgerwood AM, Lucas CE. Changes in lymph proteome induced by hemorrhagic shock: the appearance of damage-associated molecular patterns. J Trauma Acute Care Surg. 2012;73:41–50.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang P, Li Y, Zhang L-D, Wang L-H, Wang X, He C, et al. Proteome changes in mesenteric lymph induced by sepsis. Mol Med Rep. 2014;10:2793–804.

    Google Scholar 

  60. Ling XB, Mellins ED, Sylvester KG, Cohen HJ. Urine peptidomics for clinical biomarker discovery. Adv Clin Chem. 2010;51:181–213.

    Article  CAS  PubMed  Google Scholar 

  61. Sturm T, Leinders-Zufall T, Maček B, Walzer M, Jung S, Pömmerl B, et al. Mouse urinary peptides provide a molecular basis for genotype discrimination by nasal sensory neurons. Nat Commun. 2013;4:1616.

    Article  PubMed  Google Scholar 

  62. Trindade F, Amado F, Pinto da Costa J, Ferreira R, Maia C, Henriques I, et al. Salivary peptidomic as a tool to disclose new potential antimicrobial peptides. J Proteomics. 2015;115:49–57.

    Article  CAS  PubMed  Google Scholar 

  63. Castagnola M, Cabras T, Vitali A, Sanna MT, Messana I. Biotechnological implications of the salivary proteome. Trends Biotechnol. 2011;29:409–18.

    Article  CAS  PubMed  Google Scholar 

  64. Geho DH, Liotta LA, Petricoin EF, Zhao W, Araujo RP. The amplified peptidome: the new treasure chest of candidate biomarkers. Curr Opin Chem Biol. 2006;10:50–5.

    Article  CAS  PubMed  Google Scholar 

  65. Nygard NR, Giacoletto KS, Bono C, Gorka J, Kompelli S, Schwartz BD. Peptide binding to surface class II molecules is the major pathway of formation of immunogenic class II-peptide complexes for viable antigen presenting cells. J Immunol Baltim Md. 1994;152:1082–93.

    CAS  Google Scholar 

  66. Ploegh HL. MHC products: biosynthesis, intracellular traffic, and «empty» molecules. Cold Spring Harb Symp Quant Biol. 1992;57:565–70.

    Article  CAS  PubMed  Google Scholar 

  67. Schumacher TN, Heemels MT, Neefjes JJ, Kast WM, Melief CJ, Ploegh HL. Direct binding of peptide to empty MHC class I molecules on intact cells and in vitro. Cell. 1990;62:563–7.

    Article  CAS  PubMed  Google Scholar 

  68. De Bruijn ML, Schumacher TN, Nieland JD, Ploegh HL, Kast WM, Melief CJ. Peptide loading of empty major histocompatibility complex molecules on RMA-S cells allows the induction of primary cytotoxic T lymphocyte responses. Eur J Immunol. 1991;21:2963–70.

    Article  PubMed  Google Scholar 

  69. Santambrogio L, Sato AK, Carven GJ, Belyanskaya SL, Strominger JL, Stern LJ. Extracellular antigen processing and presentation by immature dendritic cells. Proc Natl Acad Sci. 1999;96:15056–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Santambrogio L, Sato AK, Fischer FR, Dorf ME, Stern LJ. Abundant empty class II MHC molecules on the surface of immature dendritic cells. Proc Natl Acad Sci. 1999;96:15050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shen Y, Liu T, Tolić N, Petritis BO, Zhao R, Moore RJ, et al. Strategy for degradomic-peptidomic analysis of human blood plasma. J Proteome Res. 2010;9:2339–46. doi:10.1021/pr901083m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shen Y, Tolić N, Liu T, Zhao R, Petritis BO, Gritsenko MA, et al. Blood peptidome-degradome profile of breast cancer. PLoS One. 2010;5:e13133.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pang B, Neijssen J, Qiao X, Janssen L, Janssen H, Lippuner C, et al. Direct antigen presentation and gap junction mediated cross-presentation during apoptosis. J Immunol. 2009;1950(183):1083–90.

    Article  Google Scholar 

  74. Goldschneider I, Cone RE. A central role for peripheral dendritic cells in the induction of acquired thymic tolerance. Trends Immunol. 2003;24:77–81.

    Article  CAS  PubMed  Google Scholar 

  75. Bonasio R, Scimone ML, Schaerli P, Grabie N, Lichtman AH, von Andrian UH. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat Immunol. 2006;7:1092–100.

    Article  CAS  PubMed  Google Scholar 

  76. Zal T, Volkmann A, Stockinger B. Mechanisms of tolerance induction in major histocompatibility complex class II-restricted T cells specific for a blood-borne self-antigen. J Exp Med. 1994;180:2089–99.

    Article  CAS  PubMed  Google Scholar 

  77. Campbell JD, Buckland KF, McMillan SJ, Kearley J, Oldfield WLG, Stern LJ, et al. Peptide immunotherapy in allergic asthma generates IL-10-dependent immunological tolerance associated with linked epitope suppression. J Exp Med. 2009;206:1535–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chowdhury NC, Jin MX, Hardy MA, Oluwole SF. Donor-specific unresponsiveness to murine cardiac allografts induced by intrathymic-soluble alloantigens is dependent on alternate pathway of antigen presentation. J Surg Res. 1995;59:91–6. doi:10.1006/jsre.1995.1137.

    Article  CAS  PubMed  Google Scholar 

  79. Gallegos AM, Bevan MJ. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J Exp Med. 2004;200:1039–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liblau RS, Tisch R, Shokat K, Yang X, Dumont N, Goodnow CC, et al. Intravenous injection of soluble antigen induces thymic and peripheral T-cells apoptosis. Proc Natl Acad Sci. 1996;93:3031–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Oluwole SF, Jin MX, Chowdhury NC, Engelstad K, Ohajekwe OA, James T. Induction of peripheral tolerance by intrathymic inoculation of soluble alloantigens: evidence for the role of host antigen-presenting cells and suppressor cell mechanism. Cell Immunol. 1995;162:33–41.

    Article  CAS  PubMed  Google Scholar 

  82. Shimomura K, Hardy MA, Oluwole SF. Tolerance induction to cardiac allografts by simultaneous or sequential intrathymic inoculation of disparate alloantigens. Transplantation. 1995;60:806–11.

    Article  CAS  PubMed  Google Scholar 

  83. Lovitch SB, Esparza TJ, Schweitzer G, Herzog J, Unanue ER. Activation of type B T cells after protein immunization reveals novel pathways of in vivo presentation of peptides. J Immunol Baltim. 2007;1950(178):122–33.

    Article  Google Scholar 

  84. Strong BSI, Unanue ER. Presentation of type B peptide-MHC complexes from hen egg white lysozyme by TLR ligands and type I IFNs independent of H2-DM regulation. J Immunol. 2011;1950(187):2193–201. doi:10.4049/jimmunol.1100152.

    Article  Google Scholar 

  85. Volkmann A, Zal T, Stockinger B. Antigen-presenting cells in the thymus that can negatively select MHC class II-restricted T cells recognizing a circulating self antigen. J Immunol. 1997;1950(158):693–706.

    Google Scholar 

  86. Donskoy E, Goldschneider I. Two developmentally distinct populations of dendritic cells inhabit the adult mouse thymus: demonstration by differential importation of hematogenous precursors under steady state conditions. J Immunol. 2003;1950(170):3514–21.

    Article  Google Scholar 

  87. Idoyaga J, Fiorese C, Zbytnuik L, Lubkin A, Miller J, Malissen B, et al. Specialized role of migratory dendritic cells in peripheral tolerance induction. J Clin Invest. 2013;123:844–54. doi:10.1172/JCI65260.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lovitch SB, Walters JJ, Gross ML, Unanue ER. APCs present a beta(k)-derived peptides that are autoantigenic to type B T cells. J Immunol. 2003;1950(170):4155–416.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Santambrogio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santambrogio, L. (2018). Lymph Formation and Composition. In: Lee, BB., Rockson, S., Bergan, J. (eds) Lymphedema. Springer, Cham. https://doi.org/10.1007/978-3-319-52423-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52423-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52421-4

  • Online ISBN: 978-3-319-52423-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics