Skip to main content

3D Microstructural Evolution on Solidifying Mg–5Nd–5Zn Alloy Observed via In Situ Synchrotron Tomography

  • Conference paper
  • First Online:
Magnesium Technology 2017

Abstract

In situ synchrotron tomography is a unique technique to study 3D microstructure evolution during solidification due to the high brilliance of the beam and the short acquisition time of the detector systems. In this work, in situ synchrotron tomographic observations were performed during the solidification of Mg–5Nd–5Zn (wt%) alloy with a cooling rate of 5 °C/min. The experiment was performed at the TOMCAT beamline of the Swiss Light Source (Paul Scherrer Institute (PSI), Villigen, Switzerland). The sample was melted using a laser-based heating system and then cooled until completely solidified. 3D tomograms were acquired during solidification. The microstructural analysis starts after the coherency point until the end of solidification. A differential thermal analysis (DTA) experiment was performed to estimate the liquidus and solidus temperature of the alloy. These values were used to correct the measured temperature from the in situ solidification experiment. Different microstructural parameters such as the volume fractions of the phases, i.e. α-Mg dendrites, interdendritics and pores, as well as the interconnectivity and skeletonization results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. J.F. Nie, Precipitation and hardening in magnesium alloys. Metall. Mater. Trans. A 43, 3891–3939 (2012)

    Article  Google Scholar 

  2. M.A. Gibson, C.J. Bettles, M.T. Murray, G.L. Dunlop, in AM-HP2: A New Magnesium High Pressure Diecasting Alloy for Automotive Powertrain Applications. TMS 2006 Annual Meeting—Magnesium Technology, San Antonio, Texas, U.S.A, p. 327

    Google Scholar 

  3. J.F. Nie, M.A. Easton, T.B. Abbott, S.M. Zhu, M.A. Gibson, in On the Creep Resistance of Magnesium Casting Alloys. 8th International Conference on Magnesium Alloys and Their Applications, Weimar, Germany, p. 89

    Google Scholar 

  4. S.M. Zhu, M.A. Gibson, M.A. Easton, J.F. Nie, The relationship between microstructure and creep resistance in die-cast magnesium-rare earth alloys. Scripta Mater. 63, 698–703 (2010)

    Article  Google Scholar 

  5. Z. Zhao, X. Teng, G. Zhou, in Effect of Nd Addition on Microstructure of Mg-Zn-Nd Master Alloys. 10th Asia-Pacific Conference on Materials Processing, APCMP 2012, Jinan, People’s Republic of China, pp. 646–650

    Google Scholar 

  6. T. Itoi, T. Inazawa, M. Yamasaki, Y. Kawamura, M. Hirohashi, Microstructure and mechanical properties of Mg-Zn-Y alloy sheet prepared by hot-rolling. Mater. Sci. Eng., A 560, 216–223 (2013)

    Article  Google Scholar 

  7. M.Y. Wang, Y.J. Xu, T. Jing, G.Y. Peng, Y.N. Fu, N. Chawla, Growth orientations and morphologies of α-Mg dendrites in Mg-Zn alloys. Scripta Mater. 67, 629–632 (2012)

    Article  Google Scholar 

  8. C.D. Yim, K.S. Shin, Semi-solid processing of magnesium alloys. Mater. Trans. 44, 558–561 (2003)

    Article  Google Scholar 

  9. D. Tolnai, P. Townsend, G. Requena, L. Salvo, J. Lendvai, H.P. Degischer, In situ synchrotron tomographic investigation of the solidification of an AlMg4.7Si8 alloy. Acta Mater. 60, 2568–2577 (2012)

    Article  Google Scholar 

  10. B. Cai, S. Karagadde, L. Yuan, T.J. Marrow, T. Connolley, P.D. Lee, In situ synchrotron tomographic quantification of granular and intragranular deformation during semi-solid compression of an equiaxed dendritic Al-Cu alloy. Acta Mater. 76, 371–380 (2014)

    Article  Google Scholar 

  11. N. Limodin, L. Salvo, E. Boller, M. Suéry, M. Felberbaum, S. Gailliègue, K. Madi, In situ and real-time 3-D microtomography investigation of dendritic solidification in an Al-10 wt.% Cu alloy. Acta Mater. 57, 2300–2310 (2009)

    Article  Google Scholar 

  12. C. Puncreobutr, P.D. Lee, K.M. Kareh, T. Connolley, J.L. Fife, A.B. Phillion, Influence of Fe-rich intermetallics on solidification defects in Al-Si-Cu alloys. Acta Mater. 68, 42–51 (2014)

    Article  Google Scholar 

  13. S. Terzi, L. Salvo, M. Suéry, N. Limodin, J. Adrien, E. Maire, Y. Pannier, M. Bornert, D. Bernard, M. Felberbaum, M. Rappaz, E. Boller, In situ X-ray tomography observation of inhomogeneous deformation in semi-solid aluminium alloys. Scripta Mater. 61, 449–452 (2009)

    Article  Google Scholar 

  14. C. Puncreobutr, A.B. Phillion, J.L. Fife, P.D. Lee, Coupling in situ synchrotron X-ray tomographic microscopy and numerical simulation to quantify the influence of intermetallic formation on permeability in aluminium-silicon-copper alloys. Acta Mater. 64, 316–325 (2014)

    Article  Google Scholar 

  15. S. Shuai, E. Guo, A.B. Phillion, M.D. Callaghan, T. Jing, P.D. Lee, Fast synchrotron X-ray tomographic quantification of dendrite evolution during the solidification of Mg-Sn alloys. Acta Mater. 118, 260–269 (2016)

    Article  Google Scholar 

  16. S. Shuai, E. Guo, M. Wang, M.D. Callaghan, T. Jing, Q. Zheng, P.D. Lee, Anomalous α-Mg dendrite growth during directional solidification of a Mg-Zn alloy. Metall. Mater. Trans. A 47, 4368–4373 (2016)

    Article  Google Scholar 

  17. F.R. Elsayed, N. Hort, M.A. Salgado-Ordorica, K. Kainer, in Magnesium Permanent Mold Castings Optimization. 5th International Conference on Light Metals Technology, Luneburg, Germany, p. 65

    Google Scholar 

  18. J.L. Fife, M. Rappaz, M. Pistone, T. Celcer, G. Mikuljan, M. Stampanoni, Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy. J. Synchrotron Radiat. 19, 352–358 (2012)

    Article  Google Scholar 

  19. D. Paganin, S.C. Mayo, T.E. Gureyev, P.R. Miller, S.W. Wilkins, Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33–40 (2002)

    Article  Google Scholar 

  20. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-image analysis. Nat. Meth. 9, 676–682 (2012)

    Article  Google Scholar 

  21. https://www.fei.com/software/avizo/materials-science/

  22. A. Manduca, L. Yu, J.D. Trzasko, N. Khaylova, J.M. Kofler, C.M. McCollough, J.G. Fletcher, Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT. Med. Phys. 36, 4911–4919 (2009)

    Article  Google Scholar 

  23. C. Fouard, G. Malandain, S. Prohaska, M. Westerhoff, Blockwise processing applied to brain microvascular network study. IEEE Trans. Med. Imaging 25, 1319–1328 (2006)

    Article  Google Scholar 

  24. D.G. Eskin, L. Katgerman, A quest for a new hot tearing criterion. Metal. Mat. Trans. A 38, 1511–1519 (2007)

    Article  Google Scholar 

  25. J.A. Dantzig, M. Rappaz, Solidification (EPFL Press, Lausanne, Switzerland, 2009), pp. 538–541

    Book  Google Scholar 

  26. V. Mathier, A. Jacot, M. Rappaz, Coalescence of equiaxed grains during solidification. Modell. Simul. Mater. Sci. Eng. 12, 479 (2004)

    Article  Google Scholar 

  27. M.C. Flemings, Coarsening in solidification processing. Mater. Trans. 46, 895–900 (2005)

    Article  Google Scholar 

  28. J.L. Fife, J.W. Gibbs, E.B. Gulsoy, C.L. Park, K. Thornton, P.W. Voorhees, The dynamics of interfaces during coarsening in solid–liquid systems. Acta Mater. 70, 66–78 (2014)

    Article  Google Scholar 

  29. www.homepages.inf.ed.ac.uk/rbf/HIPR2/skeleton.htm

Download references

Acknowledgements

This project is funded by DFG research grant, grant Nr: TO-817/4-1. The authors also would like to thank Dr. S. Gavras and Mr. R.H. Buzolin for the fruitful discussions and helpful suggestions. The authors would also like to thank Mr. M. Wolff for his support on the DTA measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tungky Subroto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Subroto, T. et al. (2017). 3D Microstructural Evolution on Solidifying Mg–5Nd–5Zn Alloy Observed via In Situ Synchrotron Tomography. In: Solanki, K., Orlov, D., Singh, A., Neelameggham, N. (eds) Magnesium Technology 2017. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52392-7_83

Download citation

Publish with us

Policies and ethics