Skip to main content

Overview of In Situ X-Ray Studies of Light Alloy Solidification in Microgravity

  • Conference paper
  • First Online:
Magnesium Technology 2017

Abstract

Gravity has significant effects on alloy solidification, primarily due to thermosolutal convection and solid phase buoyancy. Since 2004, the European Space Agency has been supporting investigation of these effects by promoting in situ X-ray monitoring of the solidification of aluminium alloys on microgravity platforms, on earth, and in periodically varying g conditions. The first microgravity experiment—investigating foaming of liquid metals —was performed on board a sounding rocket, in 2008. In 2012 the first ever X-ray-monitored solidification of a fully dense metallic alloy in space was achieved: the focus was columnar solidification of an Al–Cu alloy. This was followed in 2015 by a similar experiment, investigating equiaxed solidification. Ground reference experiments were completed in all cases. In addition, experiments have been performed on board parabolic flights—where the effects of varying gravity have been studied. We review here the technical and scientific progress to date, and outline future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. R.H. Mathiesen, L. Arnberg, F. Mo, T. Weitkamp, A. Snigirev, Time resolved X-ray imaging of dendritic growth in binary alloys. Phys. Rev. Lett. 83(24), 5062–5065 (1999)

    Article  Google Scholar 

  2. H. Nguyen-Thi, H. Jamgotchian, J. Gastaldi, J. Hartwig, T. Schenk, H. Klein, B. Billia, J. Baruchel, Y. Dabo, Preliminary in situ and real-time study of directional solidification of metallic alloys by X-ray imaging techniques. J. Phys. D Appl. Phys. 36(10A), 83–86 (2003)

    Article  Google Scholar 

  3. G. Reinhart, N. Mangelinck-Noel, H. Nguyen-Thi, T. Schenk, J. Gastaldi, B. Billia, P. Pino, J. Hartwig, J. Baruchel, Investigation of columnar–equiaxed transition and equiaxed growth of aluminium based alloys by X-ray radiography. Mater. Sci. Eng. A 413–414, 384–388 (2005)

    Article  Google Scholar 

  4. S. McFadden, P.L. Schaffer, R.H. Mathiesen, D.J. Browne, Analysis of an equiaxed dendrite growth model with comparisons to in-situ results of equiaxed dendritic growth in an Al-Ge alloy. Mater. Sci. Forum 654–656, 1359–1362 (2010)

    Article  Google Scholar 

  5. R.H. Mathiesen, L. Arnberg, P. Bleuet, A. Somogyi, Crystal fragmentation and columnar-to-equiaxed transitions in Al-Cu studied by synchrotron X-ray video microscopy. Metall. Mater. Trans. A 37, 2515–2524 (2006)

    Article  Google Scholar 

  6. G. Zimmermann, L. Sturz, B. Billia, N. Mangelinck-Noël, H. Nguyen-Thi, C.A. Gandin, D.J. Browne, W.U. Mirihanage, Investigation of columnar-to-equiaxed transition in solidification processing of AlSi alloys in microgravity—the CETSOL project. J. Phys. Conf. Ser. 327, 012003 (2011)

    Article  Google Scholar 

  7. W.U. Mirihanage, D.J. Browne, G. Zimmermann, L. Sturz, Simulation of international space station microgravity directional solidification experiments on columnar to equiaxed transition. Acta Mater. 60, 6362–6371 (2012)

    Article  Google Scholar 

  8. D.R. Liu, N. Mangelinck-Noël, Ch-A Gandin, G. Zimmermann, L. Sturz, H. Nguyen-Thi, B. Billia, Structures in directionally solidified Al–7 wt.% Si alloys: benchmark experiments under microgravity. Acta Mater. 64, 253–265 (2014)

    Article  Google Scholar 

  9. V. Pletser, S. Rouquette, U. Friedrich, J.-F. Clervoy, T. Gharib, F. Gai, C. Mora, European parabolic flight campaigns with airbus ZERO-G: looking back at the A300 and looking forward to the A310. Adv. Space Res. 56, 1003–1013 (2015)

    Article  Google Scholar 

  10. F. García-Moreno, Commercial applications of metal foams: their properties and production. Materials 9, 85 (2016)

    Article  Google Scholar 

  11. N. Vandewalle, H. Caps, G. Delon, A. Saint-Jalmes, E. Rio, L. Saulnier L et al., Foam stability in microgravity. J. Phys. Conf. Ser. 327, 012024 (2011)

    Article  Google Scholar 

  12. F. García-Moreno, C. Jiménez, M. Mukherjee, J. Banhart, Metallic foam experiment on MASER 11, in Proceedings of the 19th ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA SP-671 (2009), pp. 403–406

    Google Scholar 

  13. F. García-Moreno, M. Mukherjee, C. Jiménez, J.J. Banhart, X-ray radioscopy of liquid metal foams under microgravity. Trans. Indian Inst. Met. 62, 451–454 (2009)

    Article  Google Scholar 

  14. H. Nguyen-Thi, G. Reinhart, G.S. Abou Jaoude, R.H. Mathiesen, G. Zimmermann, Y. Houltz, D. Voss, A. Verga, D.J. Browne, A.G. Murphy, XRMON-GF: a novel facility for solidification of metallic alloys with in situ and time-resolved X-ray radiographic characterization in microgravity conditions. J. Cryst. Growth 374, 23–30 (2013)

    Article  Google Scholar 

  15. A.G. Murphy, G. Reinhart, H. Nguyen-Thi, G.S. Abou Jaoude, D.J. Browne, Meso-scale modelling of directional solidification and comparison with in situ X-ray radiographic observations made during the MASER-12 XRMON microgravity experiment. J. Alloy. Compd. 573, 170–176 (2013)

    Article  Google Scholar 

  16. S. Ganesan, D.R. Poirier, Densities of aluminum-rich aluminum-copper alloys during solidification. Metall. Trans. A 18, 721–723 (1987)

    Article  Google Scholar 

  17. J.A. Spittle, Columnar to equiaxed grain transition in as solidified alloys. Int. Mater. Rev. 51, 247–269 (2006)

    Article  Google Scholar 

  18. G. Salloum-Abou-Jaoude, H. Nguyen-Thi, G. Reinhart, R.H. Mathiesen, G. Zimmermann, D. Voss, Characterization of motion of dendrite fragment by X-ray radiography on earth and under microgravity environment. Mater. Sci. Forum 790–791, 311–316 (2014)

    Article  Google Scholar 

  19. W.U. Mirihanage, H.J. Dai, H.B. Dong, D.J. Browne, Computational modelling of columnar to equiaxed transition in alloy solidification. Adv. Eng. Mater. 15(4), 216–229 (2013)

    Article  Google Scholar 

  20. H. Nguyen-Thi, Y. Dabo, B. Drevet, M.D. Dupouy, D. Camel, B. Billia, J.D. Hunt, A. Chilton, Directional solidification of Al-1.5wt% Ni alloys under diffusion transport in space and fluid flow localisation on earth. J. Crystal Growth 281, 654–668 (2005)

    Article  Google Scholar 

  21. H. Nguyen-Thi, G. Reinhart, G. Salloum-Abou-Jaoude, D.J. Browne, A.G. Murphy, Y. Houltz, J. Li, D. Voss, A. Verga, R.H. Mathiesen, G. Zimmermann, XRMON-GF experiments devoted to the in situ X-ray radiographic observation of growth process in microgravity conditions. Microgravity Sci. Technol. 26, 37–50 (2014)

    Article  Google Scholar 

  22. A.G. Murphy, W.U. Mirihanage, D.J. Browne, R.H. Mathiesen, Equiaxed dendritic solidification and grain refiner potency characterised through in situ X-radiography. Acta Mater. 95, 83–89 (2015)

    Article  Google Scholar 

  23. A.G. Murphy, R.H. Mathiesen, Y. Houltz, J. Li, C. Lockowandt, K. Henriksson, G. Zimmermann, N. Melville, D.J. Browne, XRMON-SOL: isothermal equiaxed solidification of a grain refined Al-20 wt%Cu alloy. J. Crystal Growth 440, 38–46 (2016)

    Article  Google Scholar 

  24. A.G. Murphy, R.H. Mathiesen, Y. Houltz, J. Li, C. Lockowandt, K. Henriksson, N. Melville, D.J. Browne, Direct observation of spatially isothermal equiaxed solidification of an Al-Cu alloy in microgravity on board the MASER 13 sounding rocket. J. Crystal Growth 454, 96–104 (2016). doi:10.1016/j.jcrysgro.2016.08.054

  25. M. Becker, S. Klein, F. Kargl, In situ solute measurements with a laboratory polychromatic microfocus X-ray source during equiaxed solidification of a Al-Ge alloy. Scr. Mater. 124, 34–37 (2016)

    Article  Google Scholar 

  26. A. Griesche, K.H. Kraatz, G. Frohberg, A modified shear cell for mass transport measurements in melts. Rev. Sci. Instrum. 69, 315 (1998)

    Article  Google Scholar 

  27. J.P. Garandet, G. Mathiak, V. Botton, P. Lehman, A. Griesche, Reference microgravity measurements of liquid phase solute diffusivities in tin- and aluminum-based alloys. Int. J. Thermophys. 25, 249 (2004)

    Article  Google Scholar 

  28. B. Zhang, A. Griesche, A. Meyer, Diffusion in Al-Cu melts studied by time-resolved X-Ray radiography. Phys. Rev. Lett. 104, 035902 (2010)

    Article  Google Scholar 

  29. C. Neumann, E. Sondermann, F. Kargl, A. Meyer, Compact high-temperature shear-cell furnace for in-situ diffusion measurement. J. Phys. Conf. Ser. 327, 012052 (2011)

    Article  Google Scholar 

  30. E. Sondermann, C. Neumann, F. Kargl, A. Meyer, Compact high-temperature shear-cell furnace for in-situ interdiffusion measurements. High Temp. High Press. 42, 23 (2013)

    Google Scholar 

  31. E. Sondermann, F. Kargl, A. Meyer, Influence of cross correlations on interdiffusion in Al-rich Al-Ni melts. Phys. Rev. B 93, 184201 (2016)

    Article  Google Scholar 

  32. L. Abou-Khalil, G. Salloum-Abou-Jaoude, G. Reinhart, C. Pickmann, G. Zimmermann, H. Nguyen-Thi, Influence of gravity level on columnar-to-equiaxed transition during directional solidification of Al–20 wt% Cu alloys. Acta Mater. 110, 44–52 (2016)

    Article  Google Scholar 

  33. A.G. Murphy, J. Li, O. Janson, A. Verga, D.J. Browne, “Microgravity and hypergravity observations of equiaxed solidification of Al-Cu Alloys using in-situ X-radiography recorded in real-time on board a parabolic flight. Mater. Sci. Forum 790–791, 52–58 (2014)

    Article  Google Scholar 

  34. F. García-Moreno, S.T. Tobin, M. Mukherjee, C. Jimenez, E. Solorzano, G.S. Vinod Kumar et al., Analysis of liquid metal foams through X-ray radioscopy and microgravity experiments. Soft Matter 10, 6955–6962 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to ESA for financial and practical support for this work, particularly through their Microgravity Applications Promotion (MAP) programme (XRMON: current contract number 4200020288/06/NL/VJ, and originally AO-2004-046), and their PRODEX programme. The space hardware and XRMON furnaces development was funded through ESA’s ELIPS (European Life and Physical Sciences in Space) programme. ESA support via the MAP project MicroGfoam, AO-1999-075, is also acknowledged. We are also grateful for support from the French National Space Agency (CNES), and Enterprise Ireland. Thanks are also due to Dr. Guillaume Reinhart, Dr. Andrew Murphy, and Dr. Georges Salloum-Abou-Jaoude for their active participation in this research; without them many of these results would not have been achieved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Browne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Browne, D.J. et al. (2017). Overview of In Situ X-Ray Studies of Light Alloy Solidification in Microgravity. In: Solanki, K., Orlov, D., Singh, A., Neelameggham, N. (eds) Magnesium Technology 2017. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52392-7_80

Download citation

Publish with us

Policies and ethics