Skip to main content

Influence of Strain Path Change on the Microstructure and Mechanical Properties of Duplex Mg–Li Alloy

  • Conference paper
  • First Online:
  • 5422 Accesses

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

The microstructures, texture evolution, and mechanical properties of unidirectionally-rolled and cross-rolled Mg–9Li–6Er alloy were investigated in this paper. The results show that the Mg–9Li–6Er alloy mainly consists of α phase and β phase along with Er5Mg24 eutectic. The strain path was changed between rolling passes during the cross-rolling process, which led to a weaker texture development compared to the conventional unidirectional-rolling method. At the same time, cross-rolling process makes the alloys have a much significant deformation strengthening effect than that of the unidirectionally-rolling process, which can be mainly attributed to the change in strain path, making the α phase distributes disorderly in the β phase and interacts with each other into a network. On the other hand, due to the disordered distribution of matrix phases, uniform plastic deformation is blocked, and thus the ductility is greatly lowered.

This is a preview of subscription content, log in via an institution.

References

  1. M. Dhahri et al., Laser welding of AZ91 and WE43 magnesium alloys for automotive and aerospace industries. Adv. Eng. Mater. 3, 504–507 (2001)

    Article  Google Scholar 

  2. M.K. Kulekci, Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39, 851–865 (2008)

    Article  Google Scholar 

  3. J. Hirsch, T. Al-Samman, Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 61, 818–843 (2013)

    Article  Google Scholar 

  4. Z.X. Wu, W.A. Curtin, The origins of high hardening and low ductility in magnesium. Nature 526, 62–67 (2015)

    Article  Google Scholar 

  5. W.Q. Xu et al., A high-specific-strength and corrosion-resistant magnesium alloy. Nat. Mater. 14, 1229–1235 (2015)

    Article  Google Scholar 

  6. X.S. Hu, K. Wu, M.Y. Zheng, Effect of heat treatment on the stability of damping capacity in hypocutectic Mg-Si alloy. Scripta Mater. 54, 1639–1643 (2006)

    Article  Google Scholar 

  7. L.Z. Liu et al., Microstructure, texture, mechanical properties and electromagnetic shielding effectiveness of Mg-Zn-Zr-Ce alloys. Mater. Sci. Eng., A 669, 259–268 (2016)

    Article  Google Scholar 

  8. X.R. Meng et al., Microstructures and properties of superlight Mg-Li-Al-Zn wrought alloys. J. Alloy. Compd. 486, 722–725 (2009)

    Article  Google Scholar 

  9. R.M. Quimby, J.D. Mote, J.E. Dorn, Yield point phenomenna in magnesium-lithium single crystal. Am. Soc. Metals 55, 149–157 (1962)

    Google Scholar 

  10. J.A. Yasi, L.G. Hector, D.R. Trinkle, Prediction of thermal cross-slip stress in magnesium alloys from a geometric interaction model. Acta Mater. 60, 2350–2358 (2012)

    Article  Google Scholar 

  11. S.R. Agnew, M.H. Yoo, C.N. Tomé, Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater. 49, 4277–4289 (2001)

    Article  Google Scholar 

  12. S.R. Agnew, J.A. Horton, M.H. Yoo, Transmission electron microscopy investigation of dislocations in Mg and α-solid solution Mg-Li alloys. Metall. Mater. Trans. A 33, 851–858 (2002)

    Article  Google Scholar 

  13. R.Z. Wu et al., Recent progress in magnesium-lithium alloys. Int. Mater. Rev. 60, 65–100 (2015)

    Article  Google Scholar 

  14. Z.Y. Chen, Z.Q. Li, C. Yu, Hot deformation behavior of an extruded Mg-Li-Zn-RE alloy. Mater. Sci. Eng., A 528, 961–966 (2011)

    Article  Google Scholar 

  15. N. Tahreen et al., Hot Deformation and Work Hardening Behavior of an Extruded Mg-Zn-Mn-Y Alloy. J. Mater. Sci. Technol. 31, 1161–1170 (2015)

    Article  Google Scholar 

  16. T. Liu et al., Textures and mechanical behavior of Mg-3.3%Li alloy after ECAP. Scripta Mater. 51, 1057–1061 (2004)

    Article  Google Scholar 

  17. M.T. Pérez-Prado et al., Microstructural evolution during large strain hot rolling of an AM60 Mg alloy. Scripta Mater. 50, 661–665 (2004)

    Article  Google Scholar 

  18. Y. Huang et al., Role of multi-microalloying by rare earth elements in ductilization of magnesium alloys. J. Magnes. Alloy. 2, 1–7 (2014)

    Article  Google Scholar 

  19. N. Stanford et al., Effect of microalloying with rare-earth elements on the texture of extruded magnesium-based alloys. Scripta Mater. 59, 772–775 (2008)

    Article  Google Scholar 

  20. T.L. Chia et al., The effect of alloy composition on the microstructure and tensile properties of binary Mg-rare earth alloys. Intermetallics 17, 481–490 (2009)

    Article  Google Scholar 

  21. L. Gao, R.S. Chen, E.H. Han, Solid solution strengthening behaviors in binary Mg-Y single phase alloys. J. Alloy. Compd. 472, 234–240 (2009)

    Article  Google Scholar 

  22. B.L. Wu et al., The quasi-static mechanical properties of extruded binary Mg-Er alloys. Mater. Sci. Eng., A 573, 205–214 (2013)

    Article  Google Scholar 

  23. S. Suwas, A.K. Singh, Role of strain path change in texture development. Mater. Sci. Eng., A 356, 368–371 (2003)

    Article  Google Scholar 

  24. M.Y. Huh, S.Y. Cho, O. Engler, Randomization of the annealing texture in aluminum 5182 sheet by cross-rolling. Mater. Sci. Eng., A 315, 35–46 (2001)

    Article  Google Scholar 

  25. S.H. Hong, D.N. Lee, Deformation and recrystallization textures in cross-rolled copper sheet. J. Eng. Mater. Technol. 124, 13–22 (2002)

    Article  Google Scholar 

  26. R. Garg, S. Ranganathan, S. Suwas, Effect of mode of rolling on development of texture and microstructure in two-phase (alpha plus beta) brass. Mater. Sci. Eng., A 527, 4582–4592 (2010)

    Article  Google Scholar 

  27. N.P. Gurao, S. Sethuraman, S. Suwas, Effect of strain path change on the evolution of texture and microstructure during rolling of copper and nickel. Mater. Sci. Eng., A 528, 7739–7750 (2011)

    Article  Google Scholar 

  28. Y. Chino et al., Enhanced formability at elevated temperature of a cross-rolled magnesium alloy sheet. Mater. Sci. Eng., A 441, 349–356 (2006)

    Article  Google Scholar 

  29. H.K. Lim et al., Enhancement of mechanical properties and formability of Mg-MM-Sn-Al-Zn alloy sheets fabricated by cross-rolling method. Mater. Sci. Eng., A 506, 63–70 (2009)

    Article  Google Scholar 

  30. M. Hajian, A. Assempour, Numerical study on the effects of main BCC rolling texture components on the formability of sheet metals. Int. J. Adv. Manuf. Technol. 80, 1–9 (2015)

    Article  Google Scholar 

  31. A. Styczynski et al., Cold rolling textures in AZ31 wrought magnesium alloy. Scripta Mater. 50, 943–947 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC Funding (51371062, and U1460102), NSFHLJ (ZD201411), the Scientific Research Foundation for the Returned Overseas Chinese Scholars (Heilongjiang Province) and the Project for Innovative Talents of Science and Technology of Harbin (2014RFXXJ006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongwu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Zou, Y. et al. (2017). Influence of Strain Path Change on the Microstructure and Mechanical Properties of Duplex Mg–Li Alloy. In: Solanki, K., Orlov, D., Singh, A., Neelameggham, N. (eds) Magnesium Technology 2017. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52392-7_40

Download citation

Publish with us

Policies and ethics