Skip to main content

Ductility Enhancement in Mg Alloys by Anisotropy Engineering

  • Conference paper
  • First Online:
Book cover Magnesium Technology 2017

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

A mean-field theory suggests that certain forms of plastic anisotropy hinder ductile damage accumulation. Here, a proof-of-concept is presented in the case of Mg–Al–Zn alloys. Textures produced by severe plastic deformation are compared with the as-received rolling texture in terms of their anisotropy-ductility correlations at ambient temperature. The 3D plastic anisotropy is characterized in each material using compression specimens. The ductility is characterized using tensile bars. A micromechanical model is introduced to rationalize the trends in terms of the anisotropy effect on ductility (AED) index. Here, this index is tuned via texture manipulations at fixed chemical composition and grain size. The main finding suggests that plastic anisotropy can be engineered to aid ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. J. Hirsch, T. Al-Samman, Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 61(3), 818–843 (2013)

    Article  Google Scholar 

  2. N. Stanford, M.R. Barnett, The origin of rare earth texture development in extruded mg-based alloys and its effect on tensile ductility. Mater. Sci. Eng. A 496(1), 399–408 (2008)

    Article  Google Scholar 

  3. J. Bohlen, M.R. Nuernberg, J.W. Senn, D. Letzig, S.R. Agnew, The texture and anisotropy of magnesium-zinc-rare earth alloy sheets. Acta Mater. 55, 2101–2112 (2007)

    Article  Google Scholar 

  4. S. Sandloebes, S. Zaefferer, I. Schestakow, S. Yi, R. Gonzalez-Martinez, On the role of non-basal deformation mechanisms for the ductility of Mg and Mg-Y alloys. Acta Mater. 59, 429–439 (2011)

    Article  Google Scholar 

  5. S. Sandloebes, Z. Pei, M. Friak, L.-F. Zhu, F. Wang, S. Zaefferer, D. Raabe, J. Neugebauer, Ductility improvement of Mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties. Acta Mater. 70, 92–104 (2014)

    Article  Google Scholar 

  6. T. Mukai, M. Yamanoi, H. Watanabe, K. Higashi, Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scripta Mater. 45, 89–94 (2001)

    Article  Google Scholar 

  7. S.R. Agnew, J.A. Horton, T.M. Lillo, D.W. Brown, Enhanced ductility in strongly textured magnesium produced by equal channel angular processing. Scr. Mater. 50(3), 377–381 (2004)

    Article  Google Scholar 

  8. M. Al-Maharbi, I. Karaman, I.J. Beyerlein, D. Foley, K.T. Hartwig, L.J. Kecskes, S.N. Mathaudhu, Microstructure, crystallographic texture, and plastic anisotropy evolution in an Mg alloy during equal channel angular extrusion processing. Mater. Sci. Eng. A 528, 7616–7627 (2011)

    Article  Google Scholar 

  9. N. Kumar, N. Dendge, R. Banerjee, R.S. Mishra, Effect of microstructure on the uniaxial tensile deformation behavior of mg-4y-3re alloy. Mater. Sci. Eng. A 590, 116–131 (2014)

    Article  Google Scholar 

  10. B. Kondori, A.A. Benzerga, Effect of stress triaxiality on the flow and fracture of Mg alloy AZ31. Metall. Mater. Trans. A 45, 3292–3307 (2014)

    Article  Google Scholar 

  11. B. Kondori, A.A. Benzerga, On the notch ductility of a magnesium-rare earth alloy. Mater. Sci. Eng. A 647, 74–83 (2015)

    Article  Google Scholar 

  12. A. Pineau, A.A. Benzerga, T. Pardoen, Failure of metals I. Brittle and ductile fracture. Acta Mater. 107, 424–483 (2016)

    Article  Google Scholar 

  13. A.A. Benzerga, J. Besson, Plastic potentials for anisotropic porous solids. Eur. J. Mech. 20(3), 397–434 (2001)

    Article  Google Scholar 

  14. S.M. Keralavarma, A.A. Benzerga, A constitutive model for plastically anisotropic solids with non-spherical voids. J. Mech. Phys. Solids 58, 874–901 (2010)

    Article  Google Scholar 

  15. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103–189 (2000)

    Article  Google Scholar 

  16. A.A. Benzerga, J. Besson, A. Pineau, Anisotropic ductile fracture. Part I: experiments. Acta Mater. 52, 4623–4638 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

Support from the National Science Foundation under Grant Number CMMI-1563580 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Benzerga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Basu, S., Dogan, E., Kondori, B., Karaman, I., Benzerga, A.A. (2017). Ductility Enhancement in Mg Alloys by Anisotropy Engineering. In: Solanki, K., Orlov, D., Singh, A., Neelameggham, N. (eds) Magnesium Technology 2017. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52392-7_24

Download citation

Publish with us

Policies and ethics