Skip to main content

Numerical Study of Magnesium Production by Pidgeon Process and Pre-prepared Pellets Silicothermic Process: Comparison of Heat Transfer

  • Conference paper
  • First Online:
Magnesium Technology 2017

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 5497 Accesses

Abstract

A novel process of magnesium production has been developed by changing the preparation method of pellets of silicothermic process. For the method, the pellets consist of dolomite, ferrosilicon, fluorite and binder, which need to be roasted before reduction. After calcinations, porous pellets were obtained due to the decomposition of dolomite in the pellets. Heat transfer of the porous pellets is different from that of pellets used in Pidgeon process. In the present paper, a comparative study on heat transfer of the novel process and Pidgeon process was carried out by numerical method. The results indicated that heat transfer in Pidgeon pellets is slightly better than that in the porous pellets. For the novel process, the center temperature in a retort of 300 mm-diameter reaches 1473 K after heating the retort at 1523 K for 2.3 h (without considering reaction heat), which needs 4.8 h for the Pidgeon process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. M.A.O. Ping-li, L.I.U. Zheng, W.A.N.G. Chang-yi, G.U.O. Quan-ying, S.U.N. Jin, W.A.N.G. Feng, L.I.N. Li, Fatigue behavior of magnesium alloy and application in auto steering wheel frame. Trans. Nonferrous Metals Soc. China 18(1), s218–s222 (2008)

    Google Scholar 

  2. L.I.U. Bin, T.A.N.G. Ai-tao, P.A.N. Fu-sheng, Z.H.A.N.G. Jing, P.E.N.G. Jian, W.A.N.G. Jing-feng, Improvement and application of neural network models in development of wrought magnesium alloys. Trans. Nonferrous Metals Soc. China 21(4), 885–891 (2011)

    Article  Google Scholar 

  3. O.A. Lebedev, Y. Brusakov, N.P. Shkuryakov, Express monitoring of MgCl2 concentration in the electrolyte of magnesium electrolyzers. Russ. J. Appl. Chem. 78(8), 1276–1279 (2005)

    Article  Google Scholar 

  4. A. Krishnan, U.B. Pal, X.G. Lu, Solid oxide membrane process for magnesium production directly from magnesium oxide. Metall. Mater. Trans. B 36(4), 463–473 (2005)

    Article  Google Scholar 

  5. Winny Wulandari, Geoffrey A. Brooks, Muhammad A. Rhamdhani, Magnesium: current and alternative production routes. Chemeca Eng. Edge 2010, 347–357 (2010)

    Google Scholar 

  6. R. Winand, M.V. Gysel, A. Fontana, L. Segers, J.C. Carlier, Production of magnesium by vacuum carbothermic reduction of calcined dolomite. Trans. Inst. Min. Metall., Sect. C 99, C105–C112 (1990)

    Google Scholar 

  7. Li Rong-ti, Pan Wei, M. Sano, Kinetics and mechanism of carbothermic reduction of magnesia. Metall. Mater. Trans. B 34B, 433–437 (2003)

    Article  Google Scholar 

  8. G. Brooks, S. Trang, P. Witt, M.N.H. Khan, M. Nagle, The carbothermic route to magnesium. JOM 58(5), 51–55 (2006)

    Article  Google Scholar 

  9. S. Tassios, T.R.D. Barton, K.K. Constanti-Carey, M.W. Nagle, L.H. Prentice, Manufacture of metal E.G. magnesium, involves performing carbothermal reduction of metal oxide, preventing reformation of metal oxide, and cooling stream using Nozzle heated with unit other than gas under specific condition. WO2010012042-A1 (2010)

    Google Scholar 

  10. A. Donaldson, R.A. Cordes, Rapid plasma quenching for the production of ultrafine metal and ceramic powders. JOM 57(4), 58–63 (2005)

    Article  Google Scholar 

  11. M. Abdellatif, Review of the development work on the Mintek thermal magnesium process(MTMP). J. S. Afr. Instit Min. Metall 111, 393–399 (2011)

    Google Scholar 

  12. D.J. Zuliani, D. Reeson, Making magnesium a more cost and environmentally competitive option, in Conference of Magnesium Alloy in Vancouver (2012). http://www.gossan.ca/pdfs/Conference9MagALLOY-Paper-Vancouver-July2012.pdf

  13. L.M. Pidgeon, W.A. Alexander, Trans. Am. Inst. Min. Met. Eng. 159, 315–352 (1944)

    Google Scholar 

  14. J.M. Toguri, L.M. Pidgeon, Can. J. Chem. 39(3), 540–547 (1961)

    Article  Google Scholar 

  15. J.M. Toguri, L.M. Pidgeon, Can. J. Chem. 40(9), 1769–1776 (1962)

    Article  Google Scholar 

  16. H.U. Wen-xin, Liu Jian, Feng Nai-xiang, P.E.N.G. Jian-ping, Vacuum thermal reduction kinetics of calcined dolomite with Al-Si-Fe alloy. Chin. J. Process Eng. 10(1), 127–132 (2010). (in Chinese)

    Google Scholar 

  17. X.I.E. Wei-dong, D.A.N.G. Chun-mei, L.I. Zhao-nan, P.E.N.G. Xiao-dong, W.A.N.G. Hao, Preparation of Mg using Si-Cu reduction and its thermodynamics. Chin. J. Rare Metals 36(2), 213–217 (2012). (in Chinese)

    Google Scholar 

  18. I.M. Morsi, K.A.E. Barawy, M.B. Morsi, S.R. Abdel-Gawad, Silicothermic reduction of dolomite ore under inert atmosphere. Can. Metall. Q. 41, 15–28 (2002)

    Article  Google Scholar 

  19. G.C. Holywell, Magnesium: the first quarter millennium. JOM 57, 26–33 (2005)

    Article  Google Scholar 

  20. U.S. Geological Survey, Mineral Commodity Summaries, Jan 2015, p. 99

    Google Scholar 

  21. R.B. Li, J.J. Wei, L.J. Guo, S.J. Zhang, in 7th International Conference on CFD in the Minerals and Processing Industries, ed. by P.J. Witt, M.P. Schwarz (CSIRO, Canberra, ACT, Australia, 2009). http://www.cfd.com.au/cfd_conf09/PDFs/088LI.pdf

  22. R.B. Li, S.J. Zhang, L.J. Guo, J.J. Wei, Numerical study of magnesium (Mg) production by the Pidgeon process: impact of heat transfer on Mg reduction process. Int. J. Heat Mass Transf. 59, 328–337 (2013)

    Article  Google Scholar 

  23. T.A. Zhang, Z.H. Dou, Z.M. Zhang, M. Wen, Y. Liu, G.Z. Lv, CN Patent CN102965524-B (2014)

    Google Scholar 

  24. M. Wen, T.A. Zhang Z.H. Dou, X.D. Ren, R. Zhang, L. Zhou, Magnesium Technology (The Minerals, Metals & Materials Society, Warrendale, PA; Wiley, Hoboken, NJ, 2013), pp. 75–79

    Google Scholar 

  25. M. Wen, T.A. Zhang, Z.H. Dou, Y. Guan, R. Zhang, Chin. J. Vac. Sci. Technol. 34, 1242 (2014)

    Google Scholar 

  26. D.X. Fu, L.K. Guan, M. Wen, Z.H. Dou, R. Zhang, T.A. Zhang, Magnesium Technology (The Minerals, Metals & Materials Society, Wiley, Warrendale, PA, Hoboken, NJ, 2015), pp. 49–53

    Google Scholar 

  27. R. Zhang, Study on Pellet Preparation of Novel Silicothermic Process, Master Thesis, Northeastern University, Shenyang (2014)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Fundamental Research Funds for the Central Universities of China (N130302006, N140204013, N130102002, N130702001), National Natural Science Foundation of China under Grant (51504058; U1508217; 51404054; 51374064) and Education Department of Liaoning Province (LZ2014021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daxue Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Fu, D., Zhang, Ta., Dou, Zh., Guan, L., Wen, M. (2017). Numerical Study of Magnesium Production by Pidgeon Process and Pre-prepared Pellets Silicothermic Process: Comparison of Heat Transfer. In: Solanki, K., Orlov, D., Singh, A., Neelameggham, N. (eds) Magnesium Technology 2017. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52392-7_18

Download citation

Publish with us

Policies and ethics