Skip to main content

Time Parallelization for Nonlinear Problems Based on Diagonalization

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XXIII

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 116))

Abstract

The direct time parallelization method based on diagonalization is only applicable to linear problems. We propose here a new method based on diagonalization which permits the direct parallelization in time of a Newton iteration that works simultaneously over several time steps. We first explain the method for a scalar model problem, and then give a formulation for a nonlinear partial differential equation based on tensorization. We illustrate the methods with numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • D. Bennequin, M.J. Gander, L. Halpern, A homographic best approximation problem with application to optimized Schwarz waveform relaxation. Math. Comput. 78 (265), 185–223 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Bjørhus, On domain decomposition, subdomain iteration and waveform relaxation. PhD thesis, University of Trondheim, Norway (1995)

    Google Scholar 

  • P. Chartier, B. Philippe, A parallel shooting technique for solving dissipative ODEs. Computing 51, 209–236 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • A.J. Christlieb, C.B. Macdonald, B.W. Ong, Parallel high-order integrators. SIAM J. Sci. Comput. 32 (2), 818–835 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Emmett, M.L. Minion, Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci 7 (1), 105–132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • M.J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time Domain Decomposition Methods (Springer, Berlin, 2015), pp. 69–113

    Book  MATH  Google Scholar 

  • M.J. Gander, S. Güttel, Paraexp: a parallel integrator for linear initial-value problems. SIAM J. Sci. Comput. 35 (2), C123–C142 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • M.J. Gander, E. Hairer, Nonlinear convergence analysis for the parareal algorithm. in Domain Decomposition Methods in Science and Engineering XVII, vol. 60 (Springer, Berlin, 2008), pp. 45–56

    Google Scholar 

  • M.J. Gander, L. Halpern, Absorbing boundary conditions for the wave equation and parallel computing. Math. Comput. 74, 153–176 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • M.J. Gander, L. Halpern, Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. Numer. Anal. 45 (2), 666–697 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • M.J. Gander, M. Neumüller, Analysis of a new space-time parallel multigrid algorithm for parabolic problems. SIAM J. Sci. Comput. 38 (4), A2173–A2208 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • M.J. Gander, A.M. Stuart, Space-time continuous analysis of waveform relaxation for the heat equation. SIAM J. Sci. Comput. 19 (6), 2014–2031 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • M.J. Gander, S. Vandewalle, Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29 (2), 556–578 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • M.J. Gander, L. Halpern, F. Nataf, Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM J. Numer. Anal. 41 (5), 1643–1681 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • M.J. Gander, L. Halpern, J. Ryan, T.T.B. Tran, A direct solver for time parallelization, in 22nd International Conference of Domain Decomposition Methods (Springer, Berlin, 2014)

    Google Scholar 

  • M.J. Gander, L. Halpern, J. Rannou, J. Ryan, A direct solver for time parallelization of the wave equation. (2016a, in preparation)

    Google Scholar 

  • M.J. Gander, F. Kwok, B. Mandal, Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for parabolic problems. Electron. Trans. Numer. Anal. 45, 424–456 (2016b)

    MathSciNet  MATH  Google Scholar 

  • E. Giladi, H.B. Keller, Space time domain decomposition for parabolic problems. Numer. Math. 93 (2), 279–313 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • W. Hackbusch, Parabolic multi-grid methods, in Computing Methods in Applied Sciences and Engineering, VI, (North-Holland, Amsterdam, 1984), pp. 189–197

    Google Scholar 

  • G. Horton, S. Vandewalle, A space-time multigrid method for parabolic partial differential equations. SIAM J. Sci. Comput. 16 (4), 848–864 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • F. Kwok, Neumann–Neumann waveform relaxation for the time-dependent heat equation, in Domain Decomposition Methods in Science and Engineering XXI (Springer, Berlin, 2014), pp. 189–198

    Google Scholar 

  • J.L. Lions, Y. Maday, G. Turinici, A parareal in time discretization of PDE’s. C.R. Acad. Sci. Paris Ser. I 332, 661–668 (2001)

    Google Scholar 

  • Y. Maday, E.M. Rønquist, Parallelization in time through tensor-product space-time solvers. C. R. Math. Acad. Sci. Paris 346 (1–2), 113–118 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • B. Mandal, A time-dependent Dirichlet-Neumann method for the heat equation, in Domain Decomposition Methods in Science and Engineering, DD21 (Springer, Berlin, 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Halpern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gander, M.J., Halpern, L. (2017). Time Parallelization for Nonlinear Problems Based on Diagonalization. In: Lee, CO., et al. Domain Decomposition Methods in Science and Engineering XXIII. Lecture Notes in Computational Science and Engineering, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-319-52389-7_15

Download citation

Publish with us

Policies and ethics