Skip to main content

On the Origins of Linear and Non-linear Preconditioning

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XXIII

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 116))

Abstract

The idea of preconditioning iterative methods for the solution of linear systems goes back to Jacobi (Astron Nachr 22(20):297–306, 1845), who used rotations to obtain a system with more diagonal dominance, before he applied what is now called Jacobi’s method. The preconditioning of linear systems for their solution by Krylov methods has become a major field of research over the past decades, and there are two main approaches for constructing preconditioners: either one has very good intuition and can propose directly a preconditioner which leads to a favorable spectrum of the preconditioned system, or one uses the splitting matrix of an effective stationary iterative method like multigrid or domain decomposition as the preconditioner. Much less is known about the preconditioning of non-linear systems of equations. The standard iterative solver in that case is Newton’s method (1671) or a variant thereof, but what would it mean to precondition the non-linear problem? An important contribution in this field is ASPIN (Additive Schwarz Preconditioned Inexact Newton) by Cai and Keyes (SIAM J Sci Comput 24(1):183–200, 2002), where the authors use their intuition about domain decomposition methods to propose a transformation of the non-linear equations before solving them by an inexact Newton method. Using the relation between stationary iterative methods and preconditioning for linear systems, we show in this presentation how one can systematically obtain a non-linear preconditioner from classical fixed point iterations, and present as an example a new two level non-linear preconditioner called RASPEN (Restricted Additive Schwarz Preconditioned Exact Newton) with substantially improved convergence properties compared to ASPIN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “…sich unter zwei Rechner so vertheilen lässt …”.

  2. 2.

    Rosser was working with Forsythe and Hestenes at that time.

  3. 3.

    “An iterative algorithm is given for solving a system Ax = k of n linear equations in n unknowns. The solution is given in n steps.”

  4. 4.

    The name is going back to Krylov (1931) studying the solution of systems of second order ordinary differential equations, and the now called Krylov space only appears implicitly there.

  5. 5.

    “ASPIN may look a bit complicated …” (Cai and Keyes 2002).

References

  • X.-C. Cai, D.E. Keyes, Nonlinearly preconditioned inexact Newton algorithms. SIAM J. Sci. Comput. 24 (1), 183–200 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • X.-C. Cai, M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21 (2), 792–797 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • X.-C. Cai, D.E. Keyes, D.P. Young, A nonlinear additive Schwarz preconditioned inexact Newton method for shocked duct flow, in Proceedings of the 13th International Conference on Domain Decomposition Methods, pp. 343–350, 2001. DDM.org

    Google Scholar 

  • V. Dolean, M.J. Gander, W. Kheriji, F. Kwok, R. Masson, Nonlinear preconditioning: How to use a nonlinear Schwarz method to precondition Newton’s method. SIAM J. Sci. Comput. 38 (6), A3357–A3380 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Dryja, O. Widlund, An Additive Variant of the Schwarz Alternating Method for the Case of Many Subregions (Ultracomputer Research Laboratory, Courant Institute of Mathematical Sciences, Division of Computer Science, 1987)

    Google Scholar 

  • E. Efstathiou, M.J. Gander, Why Restricted Additive Schwarz converges faster than Additive Schwarz. BIT Numer. Math. 43 (5), 945–959 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • C. Farhat, F.-X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Methods Eng. 32 (6), 1205–1227 (1991)

    Article  MATH  Google Scholar 

  • G.E. Forsythe, Notes. Math. Tables Other Aids Comput. 5 (36), 255–258 (1951)

    Google Scholar 

  • G.E. Forsythe, M.R. Hestenes, J.B. Rosser, Iterative methods for solving linear equations. Bull. Am. Math. Soc. 57 (6), 480–480 (1951)

    Google Scholar 

  • R.W. Freund, N. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60 (1), 315–339 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • M.J. Gander, Optimized Schwarz methods. SIAM J. Numer. Anal. 44 (2), 699–731 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • M.J. Gander, Schwarz methods over the course of time. Electron. Trans. Numer. Anal. 31 (5), 228–255 (2008)

    MathSciNet  MATH  Google Scholar 

  • C.F. Gauss, Letter to Gerling, Dec 26, 1823, in Werke, vol. 9 (Göttingen, Berlin, 1903), pp. 278–281

    Google Scholar 

  • M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, vol. 49. NBS (1952)

    Google Scholar 

  • C.G.J. Jacobi, Ueber eine neue Auflösungsart der bei der Methode der kleinsten Quadrate vorkommenden lineären Gleichungen. Astron. Nachr. 22 (20), 297–306 (1845)

    Article  Google Scholar 

  • A.N. Krylov, On the numerical solution of the equation by which in technical questions frequencies of small oscillations of material systems are determined. Izvestija AN SSSR (News of Academy of Sciences of the USSR), Otdel. mat. i estest. nauk 7 (4), 491–539 (1931)

    Google Scholar 

  • C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. United States Government Press Office Los Angeles, CA (1950)

    MATH  Google Scholar 

  • C. Lanczos, Solution of systems of linear equations by minimized iterations. J. Res. Nat. Bur. Standards 49 (1), 33–53 (1952)

    Article  MathSciNet  Google Scholar 

  • J. Mandel, M. Brezina, Balancing domain decomposition: theory and computations in two and three dimensions. Technical Report UCD/CCM 2, Center for Computational Mathematics, University of Colorado at Denver (1993)

    Google Scholar 

  • C.C. Paige, M.A. Saunders, Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12 (4), 617–629 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations (Oxford Science Publications, New York, 1999)

    MATH  Google Scholar 

  • Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems. Math. Comput. 37 (155), 105–126 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • L. Seidel, Über ein Verfahren, die Gleichungen, auf welche die Methode der kleinsten Quadrate führt, sowie lineäre Gleichungen überhaupt, durch successive Annäherung aufzulösen, in Abhandlungen der Mathematisch-Physikalischen Klasse der Königlich Bayerischen Akademie der Wissenschaften, Band 11, III. Abtheilung, pp. 81–108 (1874)

    Google Scholar 

  • E. Stiefel, Über einige Methoden der Relaxationsrechnung. Z. Angew. Math. Phys. 3 (1), 1–33 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  • H.A. Van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13 (2), 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Gander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gander, M.J. (2017). On the Origins of Linear and Non-linear Preconditioning. In: Lee, CO., et al. Domain Decomposition Methods in Science and Engineering XXIII. Lecture Notes in Computational Science and Engineering, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-319-52389-7_14

Download citation

Publish with us

Policies and ethics