Skip to main content

Joining Al 6061 to ZE41A Mg Alloy by Friction Stir Welding Using a Cold Spray Transition Joint

  • Conference paper
  • First Online:
Friction Stir Welding and Processing IX

Abstract

The joining of highly dissimilar metals such as aluminum and magnesium has proven to be a difficult challenge using most of the technologies available today. This paper presents a novel method to join dissimilar materials using a combination of two advanced metals processing technologies, friction stir welding (FSW) and cold spray. By utilizing both technologies the strengths of each can be employed, while at the same time mitigating otherwise disqualifying aspects if used alone. In this study, cast ZE41A-T5 magnesium was joined to wrought 6061 aluminum. The joint was accomplished by first cold spraying a 6061 transition zone onto the magnesium alloy, followed by FSW of a 6061 plate to the cold sprayed 6061 zone. Utilizing this method, the formation of detrimentally thick intermetallic layer between the aluminum and magnesium was avoided, providing a resultant joint which matched the strength of the magnesium cast alloy. Detailed materials characterization by electron and optical microscopy, along with mechanical test results is presented. Comparisons to conventional joining techniques and potential applications of this technique is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Zhao LM, Zhang ZD (2008) Effect of Zn alloy interlayer on interface microstructure and strength of diffusion-bonded Mg-Al joints. Scripta Mater 58:283–286

    Article  Google Scholar 

  2. Peng L, Yajiang L, Haoran G, Juan W (2005) A study of phase constitution near the interface of Mg/Al vacuum diffusion bonding. Mater Lett 59(16):2001–2005

    Article  Google Scholar 

  3. Kostka A, Coelho RS, Dos Santos J, Pyzalla AR (2009) Microstructure of friction stir welding of aluminium alloy to magnesium alloy. Scripta Mater 60(11):953–956

    Article  Google Scholar 

  4. Ben-Artzy A, Sternb A, Frage N, Shribman V, Sadot O (2010) Wave formation mechanism in magnetic pulse welding. Int J Impact Eng 37:397–404

    Article  Google Scholar 

  5. Liu Liming, Hongyang Wang (2011) Microstructure and properties analysis of laser welding and laser weld bonding Mg to Al joints. Metall Mater Trans A 42(4):1044–1050

    Article  Google Scholar 

  6. Borrisutthekul R, Miyashita Y, Mutoh Y (2005) Dissimilar material laser welding between magnesium alloy AZ31B and aluminum alloy A5052-O. Sci Technol Adv Mater 6:199–204

    Article  Google Scholar 

  7. Peng Liu, Yajiang Li, Haoran Geng, Juan Wang (2007) Microstructure characteristics in TIG welded joint of Mg/Al dissimilar materials. Mater Lett 61:1288–1291

    Article  Google Scholar 

  8. Ben-Artzy A, Munitz A, Kohn G, Bronfin B, Shtechman A (2002) Joining of light hybrid constructions made of magnesium and aluminum alloys. Magnes Technol 295–302

    Google Scholar 

  9. Tomiharu O (2004) Resistance welding of aluminum alloy to dissimilar metals. J Light Metal Weld Constr 42:2–15

    Google Scholar 

  10. Shang J et al (2012) Microstructure characteristics and mechanical properties of cold metal transfer welding Mg/Al dissimilar metals. Mater Des 34:559–565

    Google Scholar 

  11. Somasekharan AC, Murr LE (2004) Microstructures in friction-stir welded dissimilar Mg Alloys and Mg alloys to 6061-T6 aluminum alloy. Mater Charact 52:49–64

    Article  Google Scholar 

  12. Tomaa C, Cicalaa E, Sallamandb P, Greveyb D (2012) CMT Joining of aluminum magnesium alloys in a statistical experiment. In: Metal 2012, 21st international conference on metallurgy and materials, 23–25 May, Hotel Voronez I, Brno, Czech Republic, EU

    Google Scholar 

  13. Papyrin A (2001) Cold spray technology. Adv Mater Process 49

    Google Scholar 

  14. Van Steenkiste TH (1999) Kinetic spray coatings. Surf Coat Technol 111:62

    Article  Google Scholar 

  15. Rokni MR, Widener CA, Champagne VK (2014) Microstructural evolution of 6061 aluminum gas-atomized powder and high-pressure cold-sprayed deposition. J Therm Spray Technol 23(3):514–524

    Article  Google Scholar 

  16. Dykhuisen R, Smith M (1998) Gas dynamic principles of cold spray. J Therm Spray Technol 7(2):205

    Article  Google Scholar 

  17. Kosarev VF, Klinkov SV, Alkhimov AP, Papyrin AN (2003) On some aspects of gas dynamic principles of cold spray process. J Therm Spray Technol 12(2):265

    Article  Google Scholar 

  18. Grujicic M, Zhao CL, Tong C, DeRosset WS, Helfritch D (2004) Analysis of the impact velocity of powder particles in the cold-gas dynamic-spray process. Mater Sci Eng A 368:222

    Article  Google Scholar 

  19. Dykhuizen RC, Smith MF, Gilmore DL, Neiser RA, Jiang X, Sampath S (1999) Impact of high velocity cold spray particles. J Therm Spray Technol 8(4):559

    Article  Google Scholar 

  20. Grujicic M, Saylor JR, Beasley DE, Derosset WS, Helfritch D (2003) Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process. Appl Surf Sci 219:211

    Article  Google Scholar 

  21. Champagne V (ed) (2007) The cold spray materials deposition process: fundamentals and applications. Woodhead Publishing Limited, Abington Hall, Abington, Cambridge CB21 6AH, England, p 57

    Google Scholar 

  22. Walsh Michael P (2000) Motor vehicle pollution control. Platin Met Rev 44(1):22–29

    Google Scholar 

  23. Gould J. Automakers look to solid state welding of dissimilar metals. Fastening/Joining/Assembly Supplement, 09.13.04

    Google Scholar 

  24. Nardi A. Cold spray test report, United Technologies Research Center, (UTRC), East Hartford, CT

    Google Scholar 

  25. Zhang HT, Song JQ (2011) Microstructural evolution of aluminum/magnesium lap joints welded using MIG process with zinc foil as an interlayer. Mater Lett 65(21):3292–3294

    Article  Google Scholar 

  26. Venkateswaran P, Reynolds AP (2012) Factors affecting the properties of friction stir welds between aluminum and magnesium alloys. Mater Sci Eng A 545:26–37

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd R. Curtis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Curtis, T.R., Champagne, V.K., West, M.K., Rokni, R., Widener, C.A. (2017). Joining Al 6061 to ZE41A Mg Alloy by Friction Stir Welding Using a Cold Spray Transition Joint. In: Hovanski, Y., Mishra, R., Sato, Y., Upadhyay, P., Yan, D. (eds) Friction Stir Welding and Processing IX. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52383-5_22

Download citation

Publish with us

Policies and ethics