Skip to main content

The Use of Higher Plants in Biomonitoring and Environmental Bioremediation

  • Chapter
  • First Online:
Phytoremediation

Abstract

This chapter provides basic information on the use of higher plants for biomonitoring and bioremediation in the world. It contains a large amount of material of the authors’ own research on the possibility of using woody plants for biomonitoring and phytoremediation of environment anthropogenic pollution with heavy metals. The species of woody plants are revealed, which are recommended for use in biomonitoring of anthropogenic pollution of the environment in temperate latitudes (the study of biogeochemical parameters of leaves): Acer platanoides, Aesculus hippocastanum, Betula pendula, Cotoneaster lucidus, Populus nigra, and Salix fragilis. The following species are recommended for phytoremediation of soils from heavy metals: Betula pendula, Cotoneaster lucidus, Syringa vulgaris, Sorbus aucuparia, Philadelphus coronarius, and Larix sibirica. The species of woody plants—bioindicators of air and soil pollution by heavy metals—are revealed. The chapter also shows the significance of the statistical analysis for the detection of the main element pollutants of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Markert B, Breure A, Zechmeister HG (eds) (2003) Bioindicators and biomonitors, principles, concepts and applications. Elsevier, Amsterdam, 997 р

    Google Scholar 

  2. Bargagli R (1998) Trace elements in terrestrial plants. An ecophysiological approach to biomonitoring and biorecovery. Springer, Berlin, 324 p

    Google Scholar 

  3. Bargagli R (2005) Trace elements in terrestrial plants: an ecophysiological approach to biomonitoring and biorecovery. M GEOS:457 (Russian)

    Google Scholar 

  4. Wolterbeek B (2002) Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ Pollut 120:11–21

    Article  CAS  PubMed  Google Scholar 

  5. Wolterbeek B (2003) Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Biomonitoring of atmospheric pollution (with emphasis on trace elements). BioMAP II. IAEA, Vienna, pp 87–105

    Google Scholar 

  6. Muneer S, Qardi TN, Mahmooduzaffar N, Siddigqi O (2011) Cytogenetic and biochemical investigations to study the response of Vigna radiata to cadmium stress. Afr J Plant Sci 5(3):83–192

    Google Scholar 

  7. Lepp NW (ed) (1981) Effect of heavy metal pollution on plants. Effects of trace metals on plant function, vol 1. Applied Science, London

    Google Scholar 

  8. Brown DH, Wells JM (1990) Physiological effects of heavy metals on the moss Rhytidiadelphus squarrosus. Ann Bot 66:641–647

    Article  CAS  Google Scholar 

  9. Kenya M, Lukasz AI, Guskov EP (1993) Role of low molecular antitioksidants under oxidative stress. Success lies. Biology 113(4):456–470 (Russian)

    Google Scholar 

  10. Wu F-B, Chen F, Wei K, Zhang G-P (2004) Effects of cadmium on free amino acid, glutathione and ascorbic acid concentrations in two barley genotypes (Hordeum vulgare L.) differing in cadmium tolerance. Chemosphere 57:447–454

    Article  CAS  PubMed  Google Scholar 

  11. Bao T, Sun T, Sun L (2011) Low molecular weight organic acids in root exudates and cadmium accumulation in cadmium hyperaccumulator Solanum nigrum L. and non-hyperaccumulator Solanum lycopersicum L. Afr J Biotechnol 10(75):17180–17185

    CAS  Google Scholar 

  12. Gorelova SV, Garifzyanov AR (2012) Ascorbic acid as a factor in the anti-oxidant protection of woody plants at technogenic stress. Tula Ecol Bull 2012:177–183 (Russian)

    Google Scholar 

  13. Anjum NA, Ahmad I, Mohmood I et al (2012) Modulation of glutathione and its related enzymes in plants responses to toxic metal and metalloids. A review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  14. Melancon MJ, Alscher R, Benson W et al (1992) Metabolic products as biomarkers. In: Huggett RJ, Kimerle RA, Mehrle Jr PM et al (eds) Biomarkers: biochemical, physiological and historical markers of anthropogenic stress. Lewis, Boca Raton, FL, pp 87–123

    Google Scholar 

  15. Van Gronsveld J, Clijsters H (1994) Toxic effects of metals. In: Farago M (ed) Plants and the chemical elements. Biochemistry, uptake, tolerance, and toxicity. VCH, New York, pp 149–178

    Google Scholar 

  16. Balakhnina T, Kosobryukhow A, Ivanov A, Kreslavskii V (2005) The effect of cadmium on CO2 exchange, variable fluorescence of chlorophyll, and the level of antioxidant enzymes in pea leaves. Russ J Plant Physiol 52:15–20

    Article  CAS  Google Scholar 

  17. Khan MA, Samiullah S, Singh S, Nazar R (2007) Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J Agron Crop Sci 193:435–444

    Article  CAS  Google Scholar 

  18. Gorelova SV, Menshikova EV, Charichonov AY (2013) Components of ascorbate-glutathione cycle of exotic species of wood in the conditions of anthropogenic stress. Factors plant resistance to extreme environmental conditions and technogenic environment. In: Materials Scientific Conference. SIFIBR SB RAS, Irkutsk, Russia, pp 60–63, 10–13 June 2013 (Russian)

    Google Scholar 

  19. Garifzyanov AR, Gorelova SV, Ivanischev VV, Muzafarov EN (2009) Comparative analysis of the activity of the components of the antioxidant system of woody plants in the conditions of anthropogenic stress News TSU. Natural sciences, vol 1. Tula State University Publishing House, Tula, pp 166–179 (Russian)

    Google Scholar 

  20. Gorelova SV, Charichonov AY (2013) Adaptation shrubs sanitary protection zone enterprises in the metallurgical industry to polymetallic pollution. In: Materials of III International scientific-practical conference “Plants and urbanization”, Dnepropetrovsk, “Weasel”. Dnepropetrovsk, pp 122–124, 19–20 March 2013 (Russian)

    Google Scholar 

  21. Bukharina IL, Povarnitskaya TM, Vedernikov KE (2007) Ecological and biological characteristics of woody plants in the urban environment: a monograph. FGOUVPO Izhevsk State Agricultural Academy, Izhevsk, 216 p (Russian)

    Google Scholar 

  22. Gorelova SV, Garifzyanov AR, Ivanishchev VV (2009) The response of photosynthetic pigments and some components of the antioxidant system of woody plants in the effect of aerosol emissions of metallurgical industry (the city of Tula). In: Problems of Modern Dendrology. Proceedings of the international scientific conference devoted to the 100th anniversary of Corresponding Member of the USSR Academy of PI Lapin. Association of Scientific Editions KMK, Moscow, pp 687–691, 30 June–2 July 2009 (Russian)

    Google Scholar 

  23. Gorelova SV, Volkova EM (2015) Physiological parameters of woody plants as the basis for bioindication and biomonitoring of the state natural and anthropogene ecosystems. News TSU. Natural Sciences, vol 3. Tula State University Publishing House, Tula, pp 271–283 (Russian)

    Google Scholar 

  24. Lichtenthaler HK, Rinderle U (1988) The role of chlorophyll fluorescence in the detection of stress conditions in plants. Critical Reviews in Analytical Chemistry. Vol. 19. Supplement 1. CRC Press, Inc. Pp. S29–S85

    Google Scholar 

  25. Krause GH, Weise E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  26. Khudsar T, Mahmooduzzafar N, Iqbal M (2001) Cadmium-induced changes in leaf epidermis, photosynthetic rate and pigment concentrations in Cajanus cajan. Biol Plant 44(1):59–64

    Article  CAS  Google Scholar 

  27. Soikkeli S, Karenlampi L (1984) Cellular and ultrastructure effects. In: Treshow M (ed) Air pollution and plant life. Wiley, Chichester, pp 159–174

    Google Scholar 

  28. Seregin IV, Kozhevnikova AD (2008) The role of root tissues and escape in the transport and accumulation of cadmium, lead, nickel and strontium. Plant Physiol 55(1):3–26. (Bibliogr.: pp 21–26, Russian)

    Google Scholar 

  29. Seregin IV (2009) Distribution of heavy metals in plants and their effect on growth. Abstract of dissertation for the degree of Doctor of Biological Sciences. M. “11format”, p 53 (Russian)

    Google Scholar 

  30. Wilkins DA (1957) A technique for measurement of lead tolerance in plants. Nature 180:37–38

    Article  CAS  Google Scholar 

  31. Obroucheva NV, Bystrova EI, Ivanov VB, Antipova OV, Seregin IV (1998) Root growth responses to lead in young maize seedlings. Plant Soil 200:55–61

    Article  CAS  Google Scholar 

  32. Obroucheva NV, Ivanov VB, Sobotik M, Bergmann H et al (2001) Lead effects on cereal roots in terms of cell growth, root architecture and metal accumulation. In: Gasparikova O et al (eds) Recent advances of plant root structure and function. Kluwer Academic, New York, pp 165–170. (Russian)

    Chapter  Google Scholar 

  33. Gracheva VV, Seregin IV, Kozhevnikova AD, Ivanov VB (2008) Distribution of zinc in the tissues and organs of maize seedlings and growth inhibiting action. In: Proceedings of the International Conference “Physical–chemical bases of structural functional organization of plants”. Ekaterinburg, pp 150–151 (Russian)

    Google Scholar 

  34. Kulagin AA, Shagieva Y (2005) In: Rosenberg GS (ed) Woody plants and biological preservation of industrial pollutants. Nauka, Moscow, p 190 (Russian)

    Google Scholar 

  35. Gorelova SV, Garifzyanov AR (2008) Changing the anatomical and morphological leaf structure of woody plants in the affected area aerotechnogenic emissions of metallurgical enterprises (for example, the city of Tula). In: Nature of the Tula region and adjacent territories. Scientific Papers, vol 1. Grif and K, Tula, pp 172–179 (Russian)

    Google Scholar 

  36. Gorelova SV, Frontasyeva MV (2015) Biomonitoring of technogenic pollution in industrialized urban ecosystems using biogeochemical activity of woody plants. In: Book of abstracts BIOMAP7 “7th International Workshop on Biomonitoring of Atmospheric Pollution”. Instituto Superior Tecnoco Universidade de Lisboa, Lisbon, Portugal, p 83, 14–19 June 2015

    Google Scholar 

  37. Martin MH, Coughtrey PJ (1982) Biological monitoring of heavy metal pollution. Land and air. Applied Science, London. ISBN 0-85334-136–2

    Google Scholar 

  38. Markert B (1993) Instrumental analysis of plants. In: Markert B (ed) Plants as biomonitors. Indicators for heavy metals in the terrestrial environment. VCH, New York, pp 65–104

    Google Scholar 

  39. Markert B (ed) (1993) Plants as biomonitors. Indicators for heavy metals in the terrestrial environment. VCH Verlagsgesellschaft mbH, Weinheim, ISBN 3-527-30001-5 (Europe primarily determined by atmospheric deposition of these metals. J Soil Sediment 10:1572–1584)

    Google Scholar 

  40. Markert B, Oehlmann J, Roth M (2000) Biomonitoring of heavy metals: definitions, possibilities and limitations, In: Proceedings of an International Workshop on Biomonitoring of atmospheric pollution (with emphasis on trace elements)—BioMAP, Lisbon. IAEA, Vienna, Austria, p 129, 21–24 Sept 1997

    Google Scholar 

  41. Baker AJM (1981) Accumulators and excluders strategies in the response of plants to heavy metals. J Plant Nutr 3(1/4):643–654

    Article  CAS  Google Scholar 

  42. Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Mercury metal tolerance in plants: evolutionary aspects. CRC, Boca Raton, FL, pp 156–177

    Google Scholar 

  43. Rühling A, Tyler G (1968) An ecological approach to the lead problem. Bot Notiser 12:321–342

    Google Scholar 

  44. Rühling A, Tyler G (1971) Regional differences in the heavy metal deposition over Scandinavia. J Appl Ecol 8:497–507

    Article  Google Scholar 

  45. Rühling A, Tyler G (1973) Heavy metal deposition in Scandinavia. Water Air Soil Pollut 2:445–455

    Article  Google Scholar 

  46. Ruhling A, Rasmussen L, Pilegaard K, Makinen A, Steinnes E (1987) Survey of atmospheric heavy metal deposition in the Nordic countries in 1985—monitored by moss analysis. NORD 21:44

    Google Scholar 

  47. Rühling A (1994) Atmospheric heavy metal deposition in Europe—estimations based on moss analysis. Nordic Council of Ministers, Copenhagen, p 9

    Google Scholar 

  48. Steinnes E (1980) Atmospheric deposition of heavy metals in Norway studied by moss analysis using neutron activation analysis and atomic absorption spectrometry. J Radioanal Chem 58:387–391

    Article  CAS  Google Scholar 

  49. Steinnes E (1985) Use of moss in heavy metal deposition studies, EMEP/CCC-Report 3/85: 161–170.

    Google Scholar 

  50. Steinnes E, Andersson EM (1991) Atmospheric deposition of mercury in Norway: temporal and spatial trends. Water Air Soil Pollut 56:391–404

    Article  CAS  Google Scholar 

  51. Steinnes E, Rambaek JP, Hanssen JE (1992) Large-scale multi-element survey of atmospheric deposition using naturally growing moss as biomonitor. Chemosphere 35:735–752

    Article  Google Scholar 

  52. Steinnes E, Frontasyeva MV (1995) Epithermal neutronactivation analysis of mosses used to monitor heavy metaldeposition around an iron smelter complex. Analyst 120:1437–1440

    Article  Google Scholar 

  53. Rühling Å, Steinnes E (1998). Atmospheric Heavy Metal deposition in Europe 1995–1996, NORD 1998:15. Nordic Council of Ministers, Copenhagen, Rounborgs grafiske hus, Holstebo, 1998:67

    Google Scholar 

  54. Berg T, Steinnes E (1997) Use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitors of heavy metal deposition: from relative to absolute values. Environ Pollut 98:61–71

    Article  CAS  PubMed  Google Scholar 

  55. Schröder W, Holy M, Pesch R, Harmens H, Ilyin I, Steinnes E, Alber R, Aleksiayenak Y, Blum O, Coşkun M, Dam M, De Temmerman L, Frolova M, Frontasyeva M, González-Miqueo L, Grodzińska K, Jeran Z, Korzekwa S, Krmar M, Kubin E, Kvietkus K, Leblond S, Liiv S, Magnússon S, Maňkovská B, Piispanen J, Rühling Å, Santamaria J, Spiric Z, Suchara I, Thöni L, Urumov V, Yurukova L, Zechmeister HG (2010) Are cadmium, lead and mercury concentrations in mosses across Europe primarily determined by atmospheric deposition of these metals? J Soils Sediments 10:1572–1584

    Google Scholar 

  56. Harmens H, Norris D et al (2008) Spartial and temporal trends in heavy metal accumulation in mosses in Europe (1990–2005). RMG Design and Print Limited, Cromwell Court, UK, 51 p

    Google Scholar 

  57. Harmens H, Norris DA, Cooper DM, Mills G, Steinnes E et al (2011) Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe. Environ Pollut 159:2852–2860

    Article  CAS  PubMed  Google Scholar 

  58. Harmens H, Norris D, Mills G, et al (2013) Heavy metals and nitrogen in mosses: spatial patterns in 2010/2011 and long-term temporal trends in Europe. ICP Vegetation Programme Coordination Center, Center for Ecology and Gidrology, Bangor, UK, p 63. ISBN: 978-1-906698-38-6. http://icpvegetation.ceh.ac.uk

  59. Harmens H, Foan L, Simon V, Mills G (2013) Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review. Environ Pollut 173:245–254

    Article  CAS  PubMed  Google Scholar 

  60. Harmens H, Mills G, Hayes F, Norris D. et al (2013) Air pollution and vegetation. ICP Vegetation annual report 2012/2013. ICP Vegetation Programme Coordination Centre, CEH Bangor, UK. ISBN: 978-1-906698-43-0. http://icpvegetation.ceh.ac.uk

  61. UNECE ICP Vegetation (2008) Spartial and temporal trends in heavy metal accumulation in mosses in Europe (1990—2005). In: Harmens H, Norris D (eds) Participants of the moss survey. RMG Design and Print Limited, Cromwell Court, UK, p 51, July 2008

    Google Scholar 

  62. Barandovski L, Cekova M, Frontasyeva MV, Pavlov SS, Stafilov T, Steinnes E, Urumov V (2008) Atmospheric deposition of trace element pollutants in Macedonia studied by the moss biomonitoring technique. Environ Monit Assess 138:107–118

    Article  CAS  PubMed  Google Scholar 

  63. Saitanis J, Frontasyeva MV, Steinnes E, Palmer MV, Ostrovnaya TM, Gundorina SF (2013) Spatiotemporal distribution of airborne elements monitored with the moss bags technique in the Greater Thriasion Plain, Attica, Greece. Environ Monit Assess 185(1):955–964

    Article  CAS  PubMed  Google Scholar 

  64. Qarri P, Lazo PV, Stafilov T, Frontasyeva MV, Harmens H, Bekteshi L, Baceva K, Goryainova Z (2014) Multi-elements atmospheric deposition study in Albania. Environ Sci Pollut Res 21:2506–2518

    Article  CAS  Google Scholar 

  65. Harmens H, Norris DA, Steinnes E, Kubin E, Piispanen J, Alber R, Aleksiayenak Y, Blum O, Coşkun M, Dam M, De Temmerman L, Fernández JA, Frolova M, Frontasyeva M, González-Miqueo L, Grodzińska K, Jeran Z, Korzekwa S, Krmar M, Kvietkus K, Leblond S, Liiv S, Magnússon SH, Maňkovská B, Pesch R, Rühling Å, Santamaria JM, Schröder W, Spiric Z, Suchara I, Thöni L, Urumov V, Yurukova L, Zechmeister HG (2010) Mosses as biomonitors of atmospheric heavy metal deposition: spatial and temporal trends in Europe. Environ Pollut 158:3144–3156

    Article  CAS  PubMed  Google Scholar 

  66. Goltsova N, Vasina TV (1995) The use of bioindication for estimation of pollution in forest ecosystems of the Leningrad region. In: Bioindacators of environment health. Ecovision World Monograph Series. Academic, Amsterdam, pp 141–154

    Google Scholar 

  67. Vergel KN, Goryaynova ZI, Vihrova IV, Frontasyeva MV (2014) Method moss bio-monitors and GIS technologies in the assessment of air pollution by industrial enterprises of the Tikhvin district of Leningrad. Ecol Urban Area 2:92–101 (Russian)

    Google Scholar 

  68. Kharin VN, Fedorets NG, Shil’tsova GV, D’yakonov VV, Spektor EN (2001) Geographic trends in the accumulation of heavy metals in mosses and forest litters in Karelia. Russ J Ecol 32(2):138–141 (Translated from Ekologiya 2:155–158)

    Google Scholar 

  69. Ermakova EV, Frontasyeva MV, Stеines E (2004) The study of the atmospheric deposition of heavy metals and other elements in the Tula region using the method of moss-biomonitors. Environ Chem 13:167–180 (Russian)

    Google Scholar 

  70. Ermakova EV, Frontasyeva MV, Steinnes E (2004) Air pollution studies in Central Russia (Tula region) using the moss biomonitoring technique, NAA and AAS. J Radioanal Nucl Chem 259:51–58

    Article  CAS  Google Scholar 

  71. Ermakova EV, Frontasyeva MV, Pavlov SS, Povtoreiko EA, Steinnes E, Cheremisina YeN (2004) Air pollution studies in Central Russia (Tver and Yaroslavl Regions) using the moss biomonitoring technique and neutron activation analysis. Journal of Atmospheric Chemistry, vol 49. Kluwer Academic, New York, pp 549–561 (Printed in the Netherlands)

    Google Scholar 

  72. Vergel KN, Frontasyeva MV, Kamanina IZ, Pavlov SS (2009) Biomonitoring of heavy metals atmospheric deposition in north-east of Moskow region used by moss biomonitoring method. Ecol Urban Area 3:88–95 (Russian)

    Google Scholar 

  73. Dunaev AM, Latukhina KS, Abdalla AA, Rumyantsev IV, Nikiforov AY (2012) Study of heavy metal contents in soil, river water, snow, needles and mosses of Ivanovo Region. Neutron spectroscopy, Nuclear Structure, Related Topics. In: XIX International Seminar on Interactioon of Neutrons with Nuclei. JINR, Dubna, pp 320–326, 25–28 May 2011

    Google Scholar 

  74. Dunaev AM, Rumyantsev IV, Frontasyeva MV, Grinevich VI (2014) Atmospheric air contamination assessment in Ivanovo Region by means of combined analysis of snow and mosses. Fundamental interactions & neutrons, nuclear structure, ultracold neutrons, related topics. In: XXI International Seminar on Interactioon of Neutrons with Nuclei, Alushta, Ukraine. JINR, Dubna, pp 282–286, 20–25 May 2013

    Google Scholar 

  75. Smirnov LI, Frontasyeva MV, Steines E (2004) Multivariate statistical analysis of heavy metals and radionuclides concentration in the mosses and soil of South Ural. Atomic Energy 97(1):68–74

    Article  Google Scholar 

  76. Frontasyeva MV, Smirnov LI, Steines E, Lyapunov SM (2004) Cherchintsev VD. Heavy metal atmospheric deposition study in the South Ural mountains. J Radioanal Nucl Chem 259:19-26.

    Google Scholar 

  77. Pankratova Yu S, Frontasyeva MV, Berdnikov AA, Pavlov SS (2007) Air pollution studies in the Republic of Udmurtia, Russian Federation, using moss biomonitoring and INAA. In: Granja C, Leroy C, Stekl I (eds) Proceedings of Summer School “Nuclear Physics Methods and Accelerators in Biology and Medicine—2007”, AIP Conference Proceedings, vol 958. American Institute of Physics, New York, pp 236–237

    Google Scholar 

  78. Koroleva YV, Krasnov EV (2002) Air pollution in Kaliningrad Region. The use and protection of natural resources in Russia 5–6:144–146 (in Russian)

    Google Scholar 

  79. Koroleva YuV (2006) Use of mosses (Hylocomium splendens, Pleurozium schreberi) to evaluate the absolute values of the atmospheric deposition of TM in the Kaliningrad region. Bulletin of the Kant Russian State University. Series of natural science, vol 7. Immanuel Kant, Kaliningrad, pp 29–34

    Google Scholar 

  80. Koroleva YV (2010) Bioindication atmospheric deposition of heavy metals in the Kaliningrad region. Kant Russian State University. Bulletin of the Russian State Kant University. Series of natural science, vol 7. Immanuel Kant, Kaliningrad, pp 39–44

    Google Scholar 

  81. Koroleva YV, Puhlova IA (2012) New data on the bioconcentration of heavy metals in the Baltic region. Bulletin of the Russian State Kant University. Series of natural science, vol 7. Immanuel Kant, Kaliningrad, pp 99–107

    Google Scholar 

  82. Koroleva YV, Vakhraynova O, Styogantsev V, Melnikova I (2014) Accumulation of heavy metals in the moss Pleurozium schreberi in the west of Russia (Kaliningrad region). In: 27th Task Force Meeting and Ozone Workshop. ICP Vegetation, Programme and Abstracts, Paris, France, p 64, 28–30 Jan 2014

    Google Scholar 

  83. ICP Vegetation (2016) 29th Task Force Meeting. Dubna, Russian Federation. Programme and Abstracts, JINR, p 82, 29th Feb–4th Mar 2016

    Google Scholar 

  84. Wegener JWM, Van Schaik MJM, Aiking H (1992) Active biomonitoring of polycyclic aromatic hydrocarbons by means of mosses. Environ Pollut 76:15–18

    Article  CAS  PubMed  Google Scholar 

  85. Thomas W, Schunke E (1984) Polyaromatic hydrocarbons, chlorinated hydrocarbons and trace metals in moss samples from Iceland. Lindbergia 10:27–32

    Google Scholar 

  86. ICP Vegetation (2013) Ozone pollution: impacts on ecosystem services and biodiversity. Report prepared by the ICP Vegetation, April 2013. In: Mills G, Wagg S, Harmens H (eds) Center for Ecology and Gidrology, Bangor, UK, p 104

    Google Scholar 

  87. ICP Vegetation (2014) 27th Task Force Meeting and Ozone Workshop. Programme and Abstracts, Paris, France, p 77, 28–30 January 2014

    Google Scholar 

  88. Alfani A, Bartoli G, Caserta P, Andolfi G (1995) Amount and elemental composition of dry deposition to leaf surface of Quercus ilex in the urban area of Naples. Agr Mediterranea Spec Vol 15:194–199

    Google Scholar 

  89. Djingova R, Wagner G, Peshev D (1995) Heavy metal distribution in Bulgaria using Populus nigra “Italica” as a biomonitor. Sci Total Environ 172:151–158

    Article  CAS  Google Scholar 

  90. Lukina NV, Nikonov VV (1996) Biogeochemical cycles in the North woods in terms of environmental contamination. Part 2. Publishing House of the Kola Science Centre of Russian Academy of Sciences, Apatity, p 192 (Russian)

    Google Scholar 

  91. Mankovska B, Popierová D, Florek M, Frontasyeva MV, Ermakova E, Antoni J (2003) Elemental composition of lime wood response to atmospheric deposition. Ekologia Bratislava 22(1):152–156

    Google Scholar 

  92. Tomašević M, Rajšić S, Đorđević D, Tasić M, Krstić J, Novaković V (2004) Heavy metals accumulation in tree leaves from urban areas. Environ Chem Lett 2:151–154

    Article  Google Scholar 

  93. Tomasević M, Vukmirović Z, Rajšić S, Tasić M, Stevanović B (2005) Characterization of trace metal particles deposited on some decidous tree leave in an urban area. Chemosphere 61:753–760

    Article  PubMed  Google Scholar 

  94. Chernenkova TV (2002) The response of forest vegetation on industrial pollution. Nauka, Moscow, p 190 (Russian)

    Google Scholar 

  95. Ufimtseva MD, Terekhina NV (2005) Phytoindication ecological state urbogeosistem. Science, St. Petersburg, p 339 (Russian)

    Google Scholar 

  96. Gorelova SV, Garifzyanov AR, Lyapunov SM, Gorbunov AV, Okina OI, Frontasyeva MV (2010) The assessment of trees using possibility for bioindication and biomonitoring of metallurgical industry emissions. In: Heavy metals and radionuclides in the environment. Materials of VI International Scientific-Practical Conference. Semipalatinsk, pp 299–306, 4–10 Feb 2010 (Russian)

    Google Scholar 

  97. Gorelova SV, Garifzyanov AR, Frontasyeva MV, Lyapunov SM, Gorbunov AV, Okina OI (2010) Physiological stability as a factor for selection of woody plants for phytoremediation and biomonitoring. In: International Сonference on Environmental Pollution and CleanBio/Phytoremediation, Pisa, Italy, p 21, 16–19 June 2010

    Google Scholar 

  98. Gorelova SV, Frontasyeva MV, Yurukova L, Coskun M, Pantelica A, Saitanis CJ, Tomasevic M, Anicic M (2011) Revitalization of urban ecosystems through vascular plants: preliminary results from the BSEC-PDF project. Agrochimica 55(2):65–84

    CAS  Google Scholar 

  99. Gorelova SV, Frontasyeva MV, Lyapunov SM, Gorbunov AV, Okina OI (2011) Woody plants in passive biomonitoring and bioremediation of urban ecosystems. Aspect of heavy metal accumulation. Neutron spectroscopy, nuclear structure, related topics. In: Abstract оf the XIX International Seminar on Interaction of Neutrons with Nuclei, Dubna. JINR, Dubna, p 29, 25–28 May 2011

    Google Scholar 

  100. Gorelova SV, Frontasyeva MV (2012) Concentration factor (Cf) of the essential elements in woody plants. Fundamental interactions & neutrons, nuclear structure, ultracold neutrons, related topics. In: Abstract оf the XX International Seminar on Interaction of Neutrons with Nuclei, Alushta, Ukraine. JINR, Dubna, p 44, 21–26 May 2012

    Google Scholar 

  101. Gorelova SV, Frontasyeva MV, Gorbunov AV, Lyapunov SM, Okina OI (2014) Bioindication and monitoring of atmospheric deposition using trees and shrubs. Materials of 27th Task Force Meeting of the UNECE ICP Vegetation. Paris, France, p 63, 28–29 Jan 2014

    Google Scholar 

  102. Gorelova SV, Frontasyeva MV, Gorbunov AV, Lyapunov SM, Okina OI (2014) Biogeochemical activity of some coniferous exotic woody species in urban ecosystems. Fundamental interactions & neutrons, nuclear structure, ultracold neutrons, related topics. In: Abstract оf the XXII International Seminar on Interaction of Neutrons with Nuclei, Dubna. JINR, Dubna, 25–30 May 2014

    Google Scholar 

  103. Gorelova SV, Volkova ME, Frontasyeva MV (2015) Bioindication and biomonitoring of anthropogenic pollution of ecosystems using a biogeochemical characteristics of the leaves of woody plants. News TSU. Natural sciences, vol 4. Tula State University Publishing House, Tula, pp 232–248 (Russian)

    Google Scholar 

  104. Gorelova SV, Frontasyeva MV, Lyapunov SM, Gorbunov AV, Mochalova EG, Okina OI (2015) Biogeochemical activity of exotic Gimnospermae species in the industrialized urban ecosystems. Journal of I, vol 1. Kant Baltic Federal University, pp 92–106 (Russian)

    Google Scholar 

  105. Gorelova SV, Kozlov SA, Tolkunova EY, Lyapunov SM, Gorbunov AV, Okina OI, Frontasyeva MV (2015) The study of atmospheric air in industrial areas of Tula city. Biology—Science of XXI Century. In: 19th International Conference Pushchino School of Young Scientists, Pushchino, Abstracts. Pushchino, p 418, 20–24 April 2015

    Google Scholar 

  106. Kuznetsov EA et al (2012) Applied ecobiotechnology: a tutorial, 2nd edn, vol 2. Binom. Knowledge Laboratory, Moscow, p 485, ISBN 978-5-9963-1052-4 (T. 2), ISBN 978-5-9963-0777-7 (in Russian) http://znanium.com/catalog.php?bookinfo=368953

  107. Gorelova SV (2015) Use of exotic Gimnospermae species for biomonitoring of environment in the urban ecosystems. Ecological problems of industrial cities. In: Scientific Papers of the 7th Russian Scientific-Practical Conference with International Participation. Saratov, vol 2. SGTU, pp 48–52 (Russian)

    Google Scholar 

  108. Prasad MN (2003) Practical use of plants for remediation of ecosystems contaminated with metals. Physiol Plant 50(5):764–780 (Russian)

    Google Scholar 

  109. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  110. Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, 384 p

    Google Scholar 

  111. Prasad NNV (2007) Sunflower (Helianthus Anuus L.)—a potential crop for environmental industry. Helia 30(46):167–174

    Article  Google Scholar 

  112. Komarek M, Tlustos P, Szakova J, Richner W, Brodbeck M, Sennhauser M (2007) The use of maize and poplar in chelant-enchanced phytoextraction of lead from contaminated soils. Chemosphere 67(4):640–651

    Article  CAS  PubMed  Google Scholar 

  113. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529

    Article  CAS  PubMed  Google Scholar 

  114. Kolbas A, Mench M, Herzig R, Nehnevajova E, Bes SM (2011) Copper phytoextraction tandem with oilseed production using commercial cultivars and mutant lines of sunflower. Int J Phytoremediat 13(1):149–165

    Google Scholar 

  115. Prasad MNV, Nakbanpote W, Phadermrod C, Rose D, Suthari S (2016). Mulberry and ventiver for phytostabilization of mine overburden: cogeneration of economic products. In: Prasad MNV (ed) Bioremediation and bioeconomy. Elsevier, Amsterdam, pp 295–328. ISBN 978-0-12-802830-8

    Google Scholar 

  116. Sathya A, Kanaganahalli V, Srinivas Rao P, Gopalakrishnan S (2016). Cultivation of sweet sorgum on heavy metal-contaminated soils by phytoremediation approach for production of bioethanol. In: Prasad MNV (ed) Bioremediation and bioeconomy. Elsevier, Amsterdam, pp 272–289. ISBN 978-0-12-802830-8

    Google Scholar 

  117. Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of the plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  PubMed  Google Scholar 

  118. Abou-Shanab RA, Chanem K, Chanem N, Al-Kolaibe A (2008) The role of bacteria on heavy metal extraction and uptake by plants growing on multi-metal-contaminated soils. World J Microbiol Biotechnol 24:254–262

    Article  Google Scholar 

  119. Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2010) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology 30:1562–1574

    Google Scholar 

  120. Vedernikov KE, Pashkov EV, Alekseenko AS (2012) Features studying mycorhiza of woody plants in the conditions of urbano areas. In: Materials All-Russian Scientific-Practical Conference, vol 1. VPO Izhevsk State Agricultural Academy, Izhevsk, pp 259–261 (Russian)

    Google Scholar 

  121. Carlot M, Ciacomini A, Casella S (2002) Aspects of plant-microbe interaction in heavy metal polluted soil. Acta Biotechnol 22:13–20

    Article  CAS  Google Scholar 

  122. Ganesan V (2008) Phytoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56:403–407

    Article  CAS  PubMed  Google Scholar 

  123. Siegel FR (2002) Environmental geochemistry of potentially toxic metals. Springer, Heidelberg, 218 p

    Google Scholar 

  124. Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13(5):468–474

    Article  CAS  PubMed  Google Scholar 

  125. Dushenkov VP, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29(5):1239–1245

    Article  CAS  PubMed  Google Scholar 

  126. Lee M, Yang M (2010) Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. J Hazard Mater 173:589-596

    Google Scholar 

  127. Brooks RR, Chambers MF, Nicks W, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362

    Article  Google Scholar 

  128. Verma VK, Singh YP, Rai JNP (2007) Biogas production from plant biomass used for phytoremediation of industrial wastes. Bioresour Technol 98:1664–1669

    Article  CAS  PubMed  Google Scholar 

  129. Kathi S. (2016) Bioenergy from phytoremediated phytomass of aquatic plants via gasification. In: Prasad MNV (ed.) Bioremediation and bioeconomy. Elsevier, Amsterdam, pp 111–128. ISBN 978-0-12-802830-8

    Google Scholar 

  130. Wenzel WW, Lombi E, Adriano D (1999) Biogeochemical processes in the rhizosphere: role in phytoremediation of metal-polluted soils. In: Prasad N, Hagemeyer J (eds) Heavy metal stress in plants—from molecules to ecosystems. Springer, Heidelberg, pp 273–303

    Chapter  Google Scholar 

  131. Glass DJ (1999) U.S. and International markets for phytoremediation, 1999–2000. D. Glass Associates, Needham, MA, p 270

    Google Scholar 

  132. Palmer CE, Warwick S, Keller W (2001) Brassicaceae (Cruciferae) family, plant, biotechnology and phytoremediation. Int J Phytoremediat 3:245–287

    Article  CAS  Google Scholar 

  133. Prasad MNV (2004) Phytoremediation of metals and radionuclides in environment: the case for natural hyperaccumulators, metal transporters, soil-amending chelators and transgenic plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer, Berlin, pp 345–391

    Chapter  Google Scholar 

  134. Prasad MNV (ed) (2016) Bioremediation and bioeconomy. Elsevier, Amsterdam, p 698. ISBN 978-0-12-802830-8

    Google Scholar 

  135. Prasad MNV, Sadzhavana KS, Naidu P (eds) (2009) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. (trans: from English Bashmakov DI, Lukatkin AS). FIZMATLIT, Moskow, 816 p. (Russian)

    Google Scholar 

  136. Favas PJC, Pratas J, Chafurvedi R, Paul MC, Prasad MNV (2016) Tree crops on Abandoned mines for environmental remediation and industrial feedstock. In: Prasad MNV (ed) Bioremediation and bioeconomy. Elsevier, Amsterdam, pp 219–251. ISBN 978-0-12-802830-8

    Google Scholar 

  137. Pulford ID, Dickinson NM 2009 The use of trees in phytoremediation technologies. In: Prasad MNV, Sadzhavana KS, Naidu P (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation (translation from English Bashmakov DI, Lukatkin AS). FIZMATLIT, Moscow, pp 440–463

    Google Scholar 

  138. Coates W (2005) Tree species selection for a mine tailings bioremediation project in Peru. Biomass Bioenergy 28:418–423

    Article  Google Scholar 

  139. Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Miner Eng 22:1007–1019

    Article  CAS  Google Scholar 

  140. Bridgewater AV (2012) Upgrading biomass fast pyrolysis liquids. Environ Prog Sustain Energy 31(2):261–268

    Article  Google Scholar 

  141. Evangelou MNH, Papaglou EG, Robinson BH, Schulin R (2015) Phytomanagement: phytoremediation and the production of biomass for economic revenue on contaminated land. In: Ansari AA et al (eds) Phytoremediation: management of environmental contaminants, vol 1. Springer, New York, pp 115–132

    Google Scholar 

  142. Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277:1302–1305

    Article  CAS  Google Scholar 

  143. Freitas H, Prasad MNV, Pratas J (2004) Plant community tolerant to trace elements growing on the degraded soils of Sao Domingos mine in the south east of Portugal: environmental implications. Environ Int 30:65–72

    Article  CAS  PubMed  Google Scholar 

  144. Chibrik TS, Lukina NV, Filimonova FI, Glazyrina MA, Rakov EA, Maleva MG, Prasad MNV (2016) Biological recultivation of mine industry deserts: facilitating the formation of phytocoenosis in the middle Ural region, Russia. In: Prasad MNV (ed) Bioremediation and bioeconomy. Elsevier, Amsterdam, pp 389–418. ISBN 978-0-12-802830-8

    Google Scholar 

  145. Gorelova SV, Kozlov SA, Tolkacheva EY, Gorbunov AV, Lyapunov SM (2014) Ecological state of soil of Tula city. In: Biology—Science of XXI Century: the 18th International Conference Pushchino School of Young Scientists, Pushchino. Abstracts. Pushchino, pp 410–411, 21–25 Apr 2014 (Russian)

    Google Scholar 

  146. Methodological guidelines for determination of heavy metals in soils and agricultural crop production (1992) CINAO, Moscow, 61 p (in Russian).

    Google Scholar 

  147. Frontasyeva MV, Pavlov SS (1999) REGATA experimental setup for air pollution studies. Problems of modern physics. In: Sisakyan AN, Trubetskov VI (eds). JINR, Dubna, pp 152–158

    Google Scholar 

  148. Markert B (1992) Establishing of “Reference Plant” for inorganic characterization of different plant species by chemical fingerprinting. Water Air Soil Pollut 64:533–538

    Article  CAS  Google Scholar 

  149. Kabata-Pendias A, Pendias H (2001) Trace elements in soil and plants, 3rd edn. CRC, Boca Raton, FL, p 432

    Google Scholar 

  150. Bityutsky NP (2011) Trace elements of higher plants. Publishing House of Saint-Petersburg University, Saint-Petersburg, 368 p

    Google Scholar 

  151. Riddell-Black D (1994) Heavy metal uptake by fast growing willow species. In: Aronsson P, Perttu K (eds) Willow vegetation filters for municipal wastwaters and sludges: a biological purification system. Swedish University of Agricultural Sciences, Uppsala, p 145

    Google Scholar 

  152. Greger M, Landberg T (1999) Use of willows in phytoextraction. Int J Phytoremediat 1:115

    Article  CAS  Google Scholar 

  153. Watson C (2002) The phytoremediation potential in Salix: studies of the interaction of heavy metals and willows. Ph.D. Thesis. University of Glasgow

    Google Scholar 

  154. Hammer D, Kayser A, Keller C (2003) Phytoextraction of Cd and Zn with Salix wiminalis in field trials. Soil Use Manage 19:187

    Article  Google Scholar 

  155. Laureysens I, Deeraedt W, Indeherberge T, Ceulemans R (2003) Population dynamics in 6-year old coppice culture of poplar. I. Clonal differences in stool mortality, shoot dynamics and shoot diameter distribution in relation to biomass production. Biomass Bioenergy 24:81

    Article  Google Scholar 

  156. Laureysens I, Blust R, De Temmerman L, Lemmens L, Ceulemans R (2004) Clonal variation in heavy metal accumulation and biomass production in poplar coppice culture. I. Seasonal variation in leaf, wood and bark concentrations. Environ Pollut 131:485–494

    Article  CAS  PubMed  Google Scholar 

  157. Laureysens I, Bogaert J, Blust R, Ceulemans R (2004) Biomass production of 17 poplar clones in a short-rotation coppice culture on a waste disposal site and its relation to soil characteristics. Forest Ecol Manag 187:295

    Article  Google Scholar 

  158. Laureysens I, De Temmerman L, Hastir T, Van Gysel M, Ceulemans R (2005) Clonal variation in heavy metal accumulation and biomass production in poplar coppice culture. II. Vertical distribution and phytoaxtraction potencial. Environ Pollut 133:541

    Article  CAS  PubMed  Google Scholar 

  159. Ekvall L, Greger M (2003) Effects of environmental biomass-producing factors on Cd uptake in two Swedish ecotypes of Pinus sylvestris. Environ Pollut 121:401

    Article  CAS  PubMed  Google Scholar 

  160. Berry C (1985) Growth and heavy metal accumulation in Pine seedlings grown with sewage sludge. J Environ Qual 14:415

    Article  CAS  Google Scholar 

  161. Saqib ANS, Waseem A, Khan AF, Mahmood Q et al (2013) Arsenic bioremediation by low cost materials derived from blue pine (Pinus wallichiana) and walnut (Juglans regia). Ecol Eng 51:88–94

    Article  Google Scholar 

  162. Turner AP, Dickinson NM (1993) Survival of Acer pseudoplatanus L. (sycamore) in tissue culture. New Phytol 123:523

    Article  CAS  Google Scholar 

  163. Turner AP, Dickinson NM (1993) Cooper tolerance of Acer pseudoplatanus L. (sycamore) in tissue culture. New Phytol 123:509

    Article  CAS  Google Scholar 

  164. Ehlin PO (1982) Seasonal variations in metal contents of birch. Geologiska Forningens Stockholm Fohandkingar 104:63

    Article  CAS  Google Scholar 

  165. Borgegard SO, Rydin H (1989) Biomass, root penetration and heavy metal uptake in birch in the soil cover over copper tailings. J Appl Ecol 26:585

    Article  Google Scholar 

  166. Eltop L, Brown G, Joachim O, Brinkmann K (1991) Lead tolerance of Betula and salix in the mining area of Mechernich, Germany. Plant Soil 131:275

    Article  Google Scholar 

  167. Ultriainen MA, Karenlampi LV, Karenlampi SO, Schat H (1997) Differential tolerance to copper and zinc of morfopropagated birches tested in hydroponics. New Phytol 137:543

    Article  Google Scholar 

  168. Kopponen P, Utriainen M, Lukkari K, Suntioinen S, Karenlampi L, Karenlampi S (2001) Clonal difference in cooper and zinc tolerance of birch in metal-supplemented soils. Environ Pollut 112:89

    Article  CAS  PubMed  Google Scholar 

  169. Prasad MNV, Freitas H (2003) Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex (hobly oak). Environ Pollut 110:277–283

    Article  Google Scholar 

  170. Wisniewsi L, Dickinson NM (2003) Toxity of copper to Quercus robur (English oak) seedlings from a cooper-rich soil. Environ Exp Bot 50:99

    Article  Google Scholar 

  171. Pyatt FV (2001) Cooper and lead accumulation by Acacia retinoides and Eucaliptus torquata in sites contaminated as a consequence of extencive ancient mining activities in Cyprus. Ecotoxicol Environ Saf 50:60

    Article  CAS  PubMed  Google Scholar 

  172. Chockalingam E, Subramanian S (2009) Utility of Eucalyptus tereticornis bark and Desulfotomaculum nitrificans for the remediation of acid mine drainage. Bioresour Technol 100:615–621

    Article  CAS  PubMed  Google Scholar 

  173. Hovmand MF, Nielsen SP, Johnsen I (2009) Root uptake of lead by Norway spruce grown on 210Pb spiked soils. Environ Pollut 157:404–409

    Article  CAS  PubMed  Google Scholar 

  174. Monaci F, Bargagli R (1995) Biomonitors as a tool to evaluate trace element deposition in complex urban environments. In: Proceedings of the 10th Word Clear Air Congress held in 1995, Helsinki, pp 238–241

    Google Scholar 

  175. Gorelova SV, Frontasyeva MV, Lyapunov SM, Gorbunov AV, Okina OI (2014) Perspectives of woody plant implementation in phytoremediation of toxic elements in industrial cities. In: Book of abstracts “11th International Phytotechnology Conference” Heraklion, Crete, Greece, p 333, 30 Sept–3 Oct 2014

    Google Scholar 

  176. Paribok ТА (1975) On accumulation of rare and scattered elements by plants of far-north. Physiological role of trace elements in plants. Edt. Shkol’nik M.Ya. Moscow, pp 184–194 (Russian)

    Google Scholar 

  177. Kemp K (2002) Trends and sources for heavy metals in urban atmosphere. Nucl Instrum Methods Phys Res, Sect A 189:227–232

    Article  CAS  Google Scholar 

  178. Burkhardt J (2010) Hygroscopic particles on leaves: nutrient or desiccants? Ecol Monogr 80(3):369–399

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by the

RFBR grant mob_st. № 09-05-90722 scientific work of the Russian young scientist Svetlana Gorelova in the Geological Institute of Russian Academy of Sciences on the project: “Study of biogeochemical variability of plants under conditions of intense anthropogenic soil pollution by using modern physical and physical-chemical methods of analysis”

The Black Sea Economic Cooperation—Project Development Fund (Research Contract No. BSEC/PDF/0018/11.2008—01.2010) «Revitalization of urban ecosystems through vascular plants: assessment of technogenic pollution impact»). BSEC (Союз Балканских государств) (Болгария, Греция, Россия, Румыния, Сербия, Турция) The Serbian scientific group also acknowledges support by MSTD RS (Contract No. 141012).

RFBR grant r_center_a 13-05-97508 “The study of adaptive characteristics and buffer role of woody exotic species in the migration of toxic elements in the urban ecosystems”

RFBR 13-05-97513 r_center_a “Evaluation of the sustainability of the state and prognosis of natural and anthropogenic ecosystems in Central Russia (Tula Region)”

RFBR grant r_center_a 15-45-03252 “Biomonitoring of air pollution by industrial emissions in forest and forest-steppe ecosystems of the Central regions of Russia (example of Tula region)”

The authors are grateful

for participation in our research, support and fruitful collaboration to the head of the laboratory of chemical and analytical investigations of the Geological Institute of the Russian Academy of Sciences Sergey Lyapunov and Senior Research Scientists Anatoly Gorbunov and Olga Okina;

for collection of plant material in ecosystems Tula region, for participation in our reseach, fruitful discussions and scientific inspiration to the head of the RFBR grant 13-05-97513 r_center_a “Evaluation of the sustainability of the state and prognosis of natural and anthropogenic ecosystems in Central Russia (Tula Region)”, Ph.D. of Biological Sciences, Associate Professor of Tula State University and my friend Elena Volkova;

for help in the statistical data treatment to Lecturer of Radiation Ecology, Radiation Protection Expert of Radiation Protection and Civil Defense Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt, Wael Badawy;

for participation in the study of soil, air pollution and woody plants to my diploma students (L.N. Tolstoy Tula State Pedagogical University)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Vladimirovna Gorelova Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gorelova, S.V., Frontasyeva, M.V. (2017). The Use of Higher Plants in Biomonitoring and Environmental Bioremediation. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-52381-1_5

Download citation

Publish with us

Policies and ethics