Skip to main content

Phytomining of Rare and Valuable Metals

  • Chapter
  • First Online:

Abstract

The exponential growth of low-grade mining ores and metal-polluted soils around the world during the last decades is expected to continue at a higher rate in the foreseeable future. Yet, the strategic and commercial importance of some elements found in those sub-economic ores and soils, their elevated market prices, and the corresponding environmental concerns have opened a window of opportunity for phytomining. This phytoextraction-based technology uses the ability of certain plants to uptake valuable metals, producing a bio-ore from the harvested biomass that allows metal recovery through smelting. Once applied at large scale, phytomining may either function as a standalone operation to retrieve the desired element or jointly with phytoremediation, financing the costs of the latter. This chapter reviews the advances of phytomining since its inception in the 1990s, focusing on the results obtained to date, with gold, nickel, thallium, and rhenium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chaptal JA (1790) Elements of chemistry, 3rd edn. Thomas and Andrews, Boston

    Google Scholar 

  2. Malte-Brun M (1824) Universal geography. Wells and Lilly, Boston

    Google Scholar 

  3. Lungwitz EE (1900) The lixiviation of gold deposits by vegetation and its geological importance. Eng Min J 69: 500–502

    Google Scholar 

  4. Girling CA, Peterson PJ (1980) Gold in plants. Gold Bull 13:151–157

    Article  CAS  Google Scholar 

  5. Sheoran V, Sheoran AS, Poonia P (2013) Phytomining of gold: a review. J Geochem Explor 128:42–50

    Article  CAS  Google Scholar 

  6. Dunn CE (2007) Handbook of exploration and environmental geochemistry, 9th edn. Elsevier, Amsterdam. doi:10.1016/S1874-2734(07)09001-8

    Google Scholar 

  7. Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193:579–580

    Article  PubMed  Google Scholar 

  8. Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JF, Marsh PB, Kla JS (eds) Land treatment of hazardous wastes. Noyes Data Corps, Park Ridge, pp 50–76

    Google Scholar 

  9. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  10. Vamerali T, Bandiera M, Mosca G (2009) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  Google Scholar 

  11. Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8:921–928

    CAS  Google Scholar 

  12. Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654

    Article  CAS  Google Scholar 

  13. Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283

    Article  CAS  PubMed  Google Scholar 

  14. Novo LAB, Mahler CF, González L (2015) Plants to harvest rhenium: scientific and economic viability. Environ Chem Lett 13:439–445

    Article  CAS  Google Scholar 

  15. Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362

    Article  Google Scholar 

  16. Nicks LJ, Chambers MF (1994) Nickel farming. Discover Mag 19: 22–23

    Google Scholar 

  17. Nicks LJ, Chambers MF (1995) Farming for metals. Min Environ Manag 3:15–18

    Google Scholar 

  18. Anderson CWN, Brooks RR, Stewart RB, Simcock R (1998) Harvesting a crop of gold in plants. Nature 395:553–554

    Article  CAS  Google Scholar 

  19. Wilson-Corral V, Anderson CWN, Rodriguez-Lopez M (2012) Gold phytomining. A review of the relevance of this technology to mineral extraction in the 21st century. J Environ Manag 111:249–257

    Article  Google Scholar 

  20. Giurco D, Cooper C (2012) Mining and sustainability: asking the right questions. Miner Eng 29:3–12

    Article  CAS  Google Scholar 

  21. Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6:189–213

    Article  CAS  Google Scholar 

  22. Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Miner Eng 22:1007–1019

    Article  CAS  Google Scholar 

  23. Phieler R, Merten D, Roth M, Büchel G, Kothe E (2015) Phytoremediation using microbially mediated metal accumulation in Sorghum bicolor. Environ Sci Pollut Res 22:19408–19416

    Article  CAS  Google Scholar 

  24. Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton. doi:10.1201/b10158-25

    Google Scholar 

  25. Sheoran V, Sheoran AS, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41:168–214

    Article  Google Scholar 

  26. Leitenmaier B, Küpper H (2013) Compartmentation and complexation of metals in hyperaccumulator plants. Front Plant Sci 4:374

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  28. Sun Y, Zhou Q, Diao C (2008) Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour Technol 99:1103–1110

    Article  CAS  PubMed  Google Scholar 

  29. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  30. van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  31. Pollard AJ, Reeves RD, Baker AJM (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217-218:8–17

    Article  CAS  PubMed  Google Scholar 

  32. Novo LAB, Covelo EF, González L (2013) Phytoremediation of amended copper mine tailings with Brassica juncea. Int J Min Reclam Environ 27:215–226

    Article  CAS  Google Scholar 

  33. Jaffré T, Pillon Y, Thomine S, Merlot S (2013) The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front Plant Sci 4:279

    Article  PubMed  PubMed Central  Google Scholar 

  34. Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  35. Agnello AC, Huguenot D, Van Hullebusch ED, Esposito G (2014) Enhanced phytoremediation: a review of low molecular weight organic acids and surfactants used as amendments. Crit Rev Environ Sci Technol 44:2531–2576

    Article  CAS  Google Scholar 

  36. Leštan D, Luo C, Li X (2008) The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut 153:3–13

    Article  PubMed  Google Scholar 

  37. Ebbs SD, Kolev SD, Piccinin RCR, Woodrow IE, Baker AJM (2010) Solubilization of heavy metals from gold ore by adjuvants used during gold phytomining. Miner Eng 23:819–822

    Article  CAS  Google Scholar 

  38. Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11

    Article  CAS  PubMed  Google Scholar 

  39. Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003

    Article  CAS  PubMed  Google Scholar 

  40. Eisler R, Wiemeyer SN (2004) Cyanide hazards to plants and animals from gold mining and related water issues. In: Biogeochemical, health, and ecotoxicological perspectives on gold and gold mining. CRC Press, Boca Raton, pp 189–220

    Chapter  Google Scholar 

  41. Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  42. do Nascimento CWA, Amarasiriwardena D, Xing B (2006) Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environ Pollut 140:114–123

    Article  CAS  PubMed  Google Scholar 

  43. Ruley AT, Sharma NC, Sahi SV, Singh SR, Sajwan KS (2006) Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil. Environ Pollut 144:11–18

    Article  CAS  PubMed  Google Scholar 

  44. Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  CAS  Google Scholar 

  45. Duquène L, Vandenhove H, Tack F, Meers E, Baeten J, Wannijn J (2009) Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments. Sci Total Environ 407:1496–1505

    Article  PubMed  Google Scholar 

  46. Lozano JC, Blanco Rodríguez P, Vera Tomé F, Calvo CP (2011) Enhancing uranium solubilization in soils by citrate, EDTA, and EDDS chelating amendments. J Hazard Mater 198:224–231

    Article  CAS  PubMed  Google Scholar 

  47. Prieto C, Lozano JC, Rodríguez PB, Tomé FV (2013) Enhancing radium solubilization in soils by citrate, EDTA, and EDDS chelating amendments. J Hazard Mater 250–251:439–446

    Article  PubMed  Google Scholar 

  48. Hseu Z-Y, Jien S-H, Wang S-H, Deng H-W (2013) Using EDDS and NTA for enhanced phytoextraction of Cd by water spinach. J Environ Manag 117:58–64

    Article  CAS  Google Scholar 

  49. Luo CL, Shen ZG, Li XD (2008) Hot NTA application enhanced metal phytoextraction from contaminated soil. Water Air Soil Pollut 188:127–137

    Article  CAS  Google Scholar 

  50. Chen H, Cutright T (2001) EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45:21–28

    Article  CAS  PubMed  Google Scholar 

  51. Smolders E, McLaughlin MJ (1996) Effect of Cl on Cd uptake by Swiss chard in nutrient solutions. Plant Soil 179:57–64

    Article  CAS  Google Scholar 

  52. Shen Z-G, Li X-D, Wang C-C, Chen H-M, Chua H (2002) Lead phytoextraction from contaminated soil with high-biomass plant species. J Environ Qual 31:1893

    Article  CAS  PubMed  Google Scholar 

  53. Chiu KK, Ye ZH, Wong MH (2005) Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere 60:1365–1375

    Article  CAS  PubMed  Google Scholar 

  54. Turgut C, Katie Pepe M, Cutright TJ (2004) The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Pollut 131:147–154

    Article  CAS  PubMed  Google Scholar 

  55. Krishnamurti GSR, Cieslinski G, Huang PM, Van Rees KCJ (1997) Kinetics of cadmium release from soils as influenced by organic acids: implication in cadmium availability. J Environ Qual 26:271

    Article  CAS  Google Scholar 

  56. Parra R, Ulery AL, Elless MP, Blaylock MJ (2008) Transient phytoextraction agents: establishing criteria for the use of chelants in phytoextraction of recalcitrant metals. Int J Phytoremediation 10:415–429

    Article  CAS  PubMed  Google Scholar 

  57. Wilson-Corral V, Anderson C, Rodriguez-Lopez M, Arenas-Vargas M, Lopez-Perez J (2011) Phytoextraction of gold and copper from mine tailings with Helianthus annuus L. and Kalanchoe serrata L. Miner Eng 24:1488–1494

    Article  CAS  Google Scholar 

  58. Msuya FA, Brooks RR, Anderson CWN (2000) Chemically-induced uptake of gold by root crops: its significance for phytomining. Gold Bull 33:134–137

    Article  CAS  Google Scholar 

  59. Anderson C, Moreno F, Meech J (2005) A field demonstration of gold phytoextraction technology. Miner Eng 18:385–392

    Article  CAS  Google Scholar 

  60. Anderson CWN, Brooks RR, Stewart RB, Simcock R (1999) Gold uptake by plants. Gold Bull 32:48–52

    Article  CAS  Google Scholar 

  61. Lamb AE, Anderson CWN, Haverkamp RG (2001) The induced accumulation of gold in the plants Brassica juncea, Berkheya coddii and chicory. Chem N Z 65:34–36

    CAS  Google Scholar 

  62. Piccinin RCR, Ebbs SD, Reichman SM, Kolev SD, Woodrow IE, Baker AJM (2007) A screen of some native Australian flora and exotic agricultural species for their potential application in cyanide-induced phytoextraction of gold. Miner Eng 20:1327–1330

    Article  CAS  Google Scholar 

  63. Rodríguez E, Peralta-Videa JR, Sánchez-Salcido B, Parsons JG, Romero J, Gardea-Torresdey JL (2007) Improving gold phytoextraction in desert willow (Chilopsis linearis) using thiourea: a spectroscopic investigation. Environ Chem 4:98

    Article  Google Scholar 

  64. Warren HV, Delavault RE (1950) Gold and silver content of some trees and horsetails in British Columbia. Geol Soc Am Bull 61:123

    Article  CAS  Google Scholar 

  65. Erdman JA, Olson JC (1985) The use of plants in prospecting for precious metals, principally gold—a selected bibliography and topic index, Open-File Report 85-118. United States Geological Survey

    Google Scholar 

  66. Anderson CWN, Stewart RB, Moreno FN, Gardea-torresdey JL, Robinson BH, Meech J a (2003) Gold phytomining. Novel developments in a plant-based mining system. In: Proc. Gold 2003 Conf. New Ind. Appl. Gold, pp 35–45

    Google Scholar 

  67. Harris AT, Naidoo K, Nokes J, Walker T, Orton F (2009) Indicative assessment of the feasibility of Ni and Au phytomining in Australia. J Clean Prod 17:194–200

    Article  CAS  Google Scholar 

  68. Rodriguez E, Sanchez-Salcido B, Peralta-Videa JR, Romero J, Cruz-Jimenez G, Gardea-Torresdey JL (2006) Phytomining gold: soil trials. In: 231st American Chemical Society National Meeting. Division of Environmental Chemistry. American Chemical Society, Atlanta, pp 384–389

    Google Scholar 

  69. Rodriguez-lopez M, Wilson-corral V, Anderson C, Lopez-Perez J (2009) Chemically assisted gold phytoextraction in Sorghum halepense. In: Eitel B (ed) 5th international conference on gold science, technology and its applications, Heidelberg, p 353

    Google Scholar 

  70. Wilson-Corral V, Rodriguez-Lopez M, Lopez-Perez J, Arenas-Vargas M, Anderson C (2010) Gold phytomining in arid and semiarid soils. In: 19th World Congress of soil science, soil solutions for a changing world, Brisbane, Australia, pp 26–29

    Google Scholar 

  71. Handayanto E, Muddarisna N, Krisnayanti BD (2014) Induced phytoextraction of mercury and gold from cyanidation tailings of small-scale gold mining area of West Lombok, Indonesia. Adv Environ Biol 8:1277–1284

    CAS  Google Scholar 

  72. Li Y, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A, Reeves R, Nelkin J (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    Article  CAS  Google Scholar 

  73. Minguzzi C, Vergnano O (1948) Il contenuto di nichel nelle ceneri di Alyssum bertolonii. Atti Soc Toscana Sci Nat A55:49–77

    Google Scholar 

  74. Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65

    Article  CAS  Google Scholar 

  75. Fernando E, Quimado M, Doronila A (2014) Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island, Philippines. PhytoKeys 37:1–13

    Article  Google Scholar 

  76. Reeves RD, Baker AJM, Borhidi A, Berazaín R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot 83:29–38

    Article  CAS  Google Scholar 

  77. Brooks RR, Reeves RD, Baker AJM, Rizzo JA, Ferreira HD (1988) The Brazilian serpentine plant expedition (BRASPEX). Natl Geogr Res 6:205–219

    Google Scholar 

  78. Tumi AF, Mihailoví N, Gají BA, Niketí M, Tomoví G (2012) Comparative study of hyperaccumulation of nickel by Alyssum murale s.l. populations from the ultramafics of serbia. Pol J Environ Stud 21:1855–1866

    CAS  Google Scholar 

  79. Bani A, Imeri A, Echevarria G, Pavlova D, Reeves RD, Morel JL, Sulçe S (2013) Nickel hyperaccumulation in the serpentine flora of Albania. Fresenius Environ Bull 22:1792–1801

    CAS  Google Scholar 

  80. Morrey DR, Balkwill K, Balkwill MJ, Williamson S (1992) A review of some studies of the serpentine flora of southern Africa. In: Baker AJM, Proctor J, Reeves RD (eds) Veg. ultramafic soils. Intercept, Andover, pp 147–157

    Google Scholar 

  81. Bani A, Pavlova D, Echevarria G, Mullaj A, Reeves RD, More JL, Sulçe S (2010) Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans. Bot Serbia 34:3–14

    Google Scholar 

  82. Reeves RD, Brooks RR, Macfarlane RM (1981) Nickel uptake by Californian Streptanthus and Caulanthus with particula reference to the Hyperaccumulator S. polygaloides gray (Brassicaceae). Am J Bot 68:708

    Article  CAS  Google Scholar 

  83. Dudley TR (1986) A new nickelophilous species of Alyssum (Cruciferae) from Portugal, Alyssum pintodasilvae T.R. Dudley, sp.nov. Feddes Rep 97:135–138

    Google Scholar 

  84. Brooks R, Robinson B, Chiarucci A, Leblanc M, Kirkman J, Gregg P (1998) Phytomining—growing a crop of a metal. In: Proc. XVI ISSS Congr, Montpellier, pp 1–6

    Google Scholar 

  85. Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V (1997) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86

    Article  CAS  Google Scholar 

  86. Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126

    Article  CAS  Google Scholar 

  87. Bani A, Echevarria G, Zhang X, Benizri E, Laubie B, Morel JL, Simonnot M-O (2015) The effect of plant density in nickel-phytomining field experiments with Alyssum murale in Albania. Aust J Bot 63:72–77

    CAS  Google Scholar 

  88. Morais I, Campos JS, Favas PJC, Pratas J, Pita F, Prasad MNV (2015) Nickel accumulation by Alyssum serpyllifolium subsp. lusitanicum (Brassicaceae) from serpentine soils of Bragança and Morais (Portugal) ultramafic massifs: plant–soil relationships and prospects for phytomining. Aust J Bot 63:17–30

    CAS  Google Scholar 

  89. Anderson CWN, Brooks RR, Chiarucci A, LaCoste CJ, Leblanc M, Robinson BH, Simcock R, Stewart RB (1999) Phytomining for nickel, thallium and gold. J Geochem Explor 67:407–415

    Article  CAS  Google Scholar 

  90. Al-Najar H, Schulz R, Römheld V (2003) Plant availability of thallium in the rhizosphere of hyperaccumulator plants: a key factor for assessment of phytoextraction. Plant Soil 249:97–105

    Article  CAS  Google Scholar 

  91. Guberman DE (2015) Thallium. In: Miner. Commod. Summ. U.S. Geological Survey, pp 170–171

    Google Scholar 

  92. Leblanc M, Petit D, Deram A, Robinson BH, Brooks RR (1999) The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from southern France. Econ Geol 94:109–114

    Article  CAS  Google Scholar 

  93. LaCoste C, Robinson B, Brooks R, Anderson C, Chiarucci A, Leblanc M (1999) The phytoremediation potential of thallium-contaminated soils using Iberis and Biscutella species. Int J Phytoremediation 1:327–338

    Article  CAS  Google Scholar 

  94. Escarré J, Lefèbvre C, Raboyeau S et al (2010) Heavy metal concentration survey in soils and plants of the Les Malines Mining District (Southern France): implications for soil restoration. Water Air Soil Pollut 216:485–504

    Article  Google Scholar 

  95. Jia Y, Xiao T, Zhou G, Ning Z (2013) Thallium at the interface of soil and green cabbage (Brassica oleracea L. var. capitata L.): soil-plant transfer and influencing factors. Sci Total Environ 450-451:140–147

    Article  CAS  PubMed  Google Scholar 

  96. Naumov AV (2007) Rhythms of rhenium. Russ J Non Ferr Met 48:418–423

    Article  Google Scholar 

  97. Polyak DE (2014) Rhenium. In: Miner. Commod. Summ. U.S. Geological Survey, pp 130–131

    Google Scholar 

  98. Askari Zamani MA, Hiroyoshi N, Tsunekawa M, Vaghar R, Oliazadeh M (2005) Bioleaching of Sarcheshmeh molybdenite concentrate for extraction of rhenium. Hydrometallurgy 80:23–31

    Article  CAS  Google Scholar 

  99. Tagami K, Uchida S (2010) Rhenium: radionuclides. In: Encycl. Inorg. Bioinorg. Chem, pp 23–26

    Google Scholar 

  100. Myers AT, Hamilton JC (1961) Rhenium in plant samples from the Colorado plateau. Denver, Colorado

    Google Scholar 

  101. Borisova L, Ermakov V (2002) Concentrating of rhenium by plants. In: Third Russ. Semin. Technetium, pp 1–2

    Google Scholar 

  102. Tagami K, Uchida S (2005) A comparison of concentration ratios for technetium and nutrient uptake by three plant species. Chemosphere 60:714–717

    Article  CAS  PubMed  Google Scholar 

  103. Bozhkov O, Tzvetkova C, Borisova L, Bryskin B (2012) Phytomining: new method for rhenium. Adv Mater Process 170:34–37

    CAS  Google Scholar 

  104. Bozhkov O, Tzvetkova C (2009) Advantages of rhenium phytomining by lucerne and clover from ore dressing soils. In: 7th WSEAS Int. Conf. Environ. Ecosyst. Dev, Puerto de la Cruz, Spain, pp 127–131

    Google Scholar 

  105. Bozhkov O, Tzvetkova C, Blagoeva T (2008) An approach to rhenium phytorecovery from soils and waters in ore dressing regions of Bulgaria. In: 2nd WSEAS Int. Conf. Waste Manag. Water Pollution, Air Pollution, Indoor Clim, pp 262–265

    Google Scholar 

  106. Tzvetkova C, Bozhkov O, Borisova L (2011) Rhenium phytomining by Alfalfa (Medicago) from soils of ore dressing regions at laboratory conditions. In: 7th Int. Symp. Technetium Rhenium—Sci. Util, p 116

    Google Scholar 

  107. Hooke RL, Martín-Duque JF (2012) Land transformation by humans: a review. GSA Today 12:4–10

    Article  Google Scholar 

  108. European Commission (2008) Communication from the Commission to the European Parliament and the Council: the raw materials initiative—meeting our critical needs for growth and jobs in Europe (COM 699 Final), Brussels

    Google Scholar 

  109. European Commission (2014) Communication from the commission: on the review of the list of critical raw materials for the EU and the implementation of the Raw Materials Initiative (COM 297 Final), Brussels

    Google Scholar 

  110. Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  PubMed  Google Scholar 

  111. Marchiol L (2012) Synthesis of metal nanoparticles in living plants. Ital J Agron 7:274–282. doi:10.4081/ija.2012.e37

    Google Scholar 

  112. Taylor AF, Rylott EL, Anderson CWN, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 9:e93793

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Portuguese Foundation for Science and Technology (FCT) under grant No. SFRH/BPD/103476/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís A. B. Novo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Novo, L.A.B., Castro, P.M.L., Alvarenga, P., da Silva, E.F. (2017). Phytomining of Rare and Valuable Metals. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-52381-1_18

Download citation

Publish with us

Policies and ethics