Skip to main content

Manufacturing Induced Properties: Determination, Understanding, and Beneficial Use

  • Chapter
  • First Online:
Manufacturing Integrated Design

Abstract

Based on its procedural principle, every manufacturing technology affects a variety of properties of the workpiece or product in a characteristic way (Sect. 2.3). The sum of all those properties which comprise geometrical as well as material-related ones is considered as manufacturing-induced properties. While the geometric manufacturing-induced properties are often the reason why a specific technology is chosen by the designer for the manufacturing of a certain product, the material-related manufacturing-induced properties are often seen as by-products of the process. With regard to metal forming, all manufacturing processes inherently influence the mechanical properties of the manufactured material. In many cases, these mechanical manufacturing-induced properties are merely regarded in terms of restrictions in product development. However, with respect to a manufacturing-integrated product development approach, the mechanical properties are of special interest, since we aim at utilizing their full potential to maximize the product performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artymiak P, Bukowski L, Feliks J (1997) Forecasting of durability of machin components using artificial neural network. In: 3rd International Conference on Neural Networks, Kule 430, Oct 1997

    Google Scholar 

  • Bäumel A, Seeger T (1990) Materials data for cyclic loading, Mater Sci Monog 61, Elsevier

    Google Scholar 

  • Bergmann JW (1983) Zur Betriebsfestigkeit gekerbter Bauteile auf der Grundlage der örtlichen Beanspruchungen. Dissertation, TU Darmstadt

    Google Scholar 

  • Bödecker J (2013) Randschichtmodifikation von integral verzweigten Blechprofilen mit UFG Gradientengefügen. Dissertation, TU Darmstadt

    Google Scholar 

  • Boller C, Seeger T, Vormwald M (2008) Materials database for cyclic loading. Fachgebiet Werkstoffmechanik, TU Darmstadt

    Google Scholar 

  • Bott A (2015) Nichtparametrische Schätzung einer (bedingten) Verteilung ausgehend von Daten mit zusätzlichen Messfehlern. Dissertation, TU Darmstadt

    Google Scholar 

  • Bott A, Kohler M (2016a) Adaptive estimation of a conditional density. Int Stat Rev 84:291–316

    Article  Google Scholar 

  • Bott A, Kohler M (2016b) Nonparametric estimation of a conditional density. (To appear in Ann I Stat Math)

    Google Scholar 

  • Brooks I, Lin P, Palumbo G et al (2008) Analysis of hardness-tensile strength relationships for electroformed nanocrystalline materials. Mat Sci Eng A 491:412–419

    Article  Google Scholar 

  • Bruder E, Bohn T, Müller C (2008) Properties of UFG HSLA steel profiles produced by linear flow splitting. Mater Sci Forum 584–586:661–666

    Article  Google Scholar 

  • Bruder E (2011) Thermische Stabilität von Stählen mit ultrafeinkörnigen Gradientengefügen und deren mechanische Eigenschaften. Dissertation, TU Darmstadt

    Google Scholar 

  • Bruder E (2012) The effect of deformation texture on the thermal stability of UFG HSLA steel. J Mater Sci 47:7751–7758

    Article  Google Scholar 

  • Carsley JE, Fisher A, Milligan WW, Aifantis EC (1998) Mechanical behavior of a bulk nanostructured iron alloy. Metall Mater Trans A 29A:2261–2271

    Article  Google Scholar 

  • Devroye L, Lugosi G (1996) A universally acceptable smoothing factor for kernel density estimation. Ann Stat 24:2499–2512

    Article  Google Scholar 

  • Devroye L, Lugosi G (2001) Combinatorial methods in density estimation. Springer, New York

    Book  Google Scholar 

  • Ehrlenspiel K, Kugelfischer Georg Schäfer & Co. (1968) Vorrichtung zur Bestimmung der Wälzfestigkeit von rotationssymmetrischen Körpern. Patentschrift Nr. 1 260 824

    Google Scholar 

  • el Dsoki C, Hanselka H, Kaufmann H et al (2009) Das ANSLC Programm zur Abschätzung zyklischer Werkstoffkennwerte. Materialwissenschaften und Werkstofftechnik 40(8):612–617

    Article  Google Scholar 

  • el Dsoki C, Lohmann F, Hanselka H et al (2012) Influence of the topology of an artificial neural network on the results for estimating the cyclic material proper-ties. Mater Sci Eng 43(8):681–686

    Google Scholar 

  • Furer D, Kohler M, Krzyżak A (2013) Fixed-design regression estimation based on real and artificial data. J Nonparametr Stat 25:223–241

    Article  Google Scholar 

  • Furer D, Kohler M (2015) Smoothing spline regression estimation based on real and artificial data. Metrika 78:711–746

    Article  Google Scholar 

  • Gaško M, Rosenberg G (2011) Correlation between hardness and tensile properties in ultra-high strength dual phase steels—short communication. Mater Eng 18:155–159

    Google Scholar 

  • Glover D (1982) A ball-rod rolling contact fatigue tester, rolling contact fatigue testing of bearing steels. In: Hoo JJC (ed) ASTM STP 771, pp 107–124

    Google Scholar 

  • Gramlich S (2013) Vom fertigungsgerechten Konstruieren zum produktionsintegrierenden Entwickeln: Durchgängige Modelle und Methoden im Produktlebenszyklus. Dissertation, TU Darmstadt

    Google Scholar 

  • Gramlich S, Roos M, Ahmels L, Kaune V, Müller C, Bauer O, Karin I, Tomasella A, Melz T (2015) Ein wissensbasierter fertigungsintegrierender Produktentwicklungsansatz. In: Binz H, Bertsche B, Bauer W, Roth D (eds) Stuttgarter Symposium für Produktentwicklung: Entwicklung smarter Produkte für die Zukunft, Stuttgart, 19 June 2015

    Google Scholar 

  • Groche P, Vucic D, Jöckel M (2007) Basics of linear flow splitting. J Mater Process Technol 183:249–255

    Article  Google Scholar 

  • Györfi L, Kohler M, Krzyżak A, Walk H (2002) A distribution-free theory of nonparametric regression. Springer, New York

    Book  Google Scholar 

  • Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc Lond 64:747–753

    Article  Google Scholar 

  • Hansmann M, Kohler M (2016a) Estimation of quantiles from data with additional measurement errors. (To appear in Stat Sinica)

    Google Scholar 

  • Hansmann M, Kohler M (2016b) Estimation of conditional quantiles from data with additional measurement errors

    Google Scholar 

  • Hatscher A (2004) Abschätzung zyklischer Kennwerte von Stählen. Dissertation, TU Clausthal

    Google Scholar 

  • Heinrietz A, Diefenbach C, Landersheim V et al. (2011) Potential innovativer Methoden für den Betriebsfestigkeitsnachweis unter Berücksichtigung von Werkstoff und Fertigung. Presented at DVM Tagung Betriebsfestigkeit, 2011

    Google Scholar 

  • Hoffmann G, Lipp K (2002) Design for rolling contact fatigue 2002 advances in powder metallurgy & particulate materials. In: Conference Proceedings 2002 P/M World Congress, MPIF, Orlando, 2002

    Google Scholar 

  • Höppel HW, Mughrabi H, Vinogradov A (2009) Fatigue Properties of Bulk Nanostructured Materials. In: Zehetbauer MJ, Zhu YT (eds) Bulk nanostructured materials. Wiley, Weinhein, pp 481–500

    Chapter  Google Scholar 

  • Hornbogen E (2006) Werkstoffe—Aufbau und Eigenschaften von Keramik-, Metall-, Polymer-, und Verbundwerkstoffen. Springer, Heidelberg

    Google Scholar 

  • Hughes D, Hansen N (1997) High angle boundaries formed by grain subdivision mechanisms. Acta Mater 45(9):3871–3886

    Article  Google Scholar 

  • Iwahashi Y, Furukawa M, Horita Z et al (1998) Microstructural characteristics of ultrafine-grained aluminum produced using equal-channel angular pressing. Metall Mater Trans A 29(9):2245–2252

    Article  Google Scholar 

  • Joshi SP, Ramesh KT (2008) Grain size dependent shear instabilities in body centered and face-centered cubic materials. Mat Sci Eng A 493:65–70

    Article  Google Scholar 

  • Karin I, Lommatzsch N, Lipp K et al. (2012) Gestaltung von Wälzkontakten mit spaltprofilierten Flanschen. In: Tagungsband des 4. Zwischenkolloquiums vom SFB666, Darmstadt, 14–15 Nov 2012, pp 123–130

    Google Scholar 

  • Karin I, Tomasella A, Landersheim V et al (2013a) Application of the local strain approach on a rolling point contact model. Int J Fatigue 47:351–360

    Article  Google Scholar 

  • Karin I, Hößbacher J, Lipp K et al (2013b) Prüfung linearer Bauteile auf Wälzfestigkeit. Mater Test 55(1):12–16

    Article  Google Scholar 

  • Karin I, Wagner C, Lipp K et al. (2014) Innovative Linearsysteme mit spaltprofilierten Wälzkontaktflächen—Nutzung der Möglichkeiten der kontinuierlichen Fließfertigung zur Funktionsintegration. In: Tagungsband des 5. Zwischenkolloquiums vom SFB666, Mörfelden-Walldorf, 19–20 Nov 2014, pp 123–132

    Google Scholar 

  • Karin I (2016) Zur Verwendung von durch Spaltprofilieren hergestellten Blechprofilen als wälzbeanspruchte Oberflächen im Vergleich zum Ausgangszustand. Dissertation, TU Darmstadt

    Google Scholar 

  • Kaune V (2013) Entstehung und Eigenschaften von UFG Gradientengefügen durch Spaltprofilieren und Spaltbiegen höherfester Stähle. Dissertation, TU Darmstadt

    Google Scholar 

  • Landersheim V, Rullbaum F, Jöckel M et al. (2010) Untersuchung schädigungsmechanischer Ansätze an UFG Gefügebauteilen sowie Bewertung ihrer Schwingfestigkeit mit Hilfe der FEM, SFB 666 3. Zwischenkolloquium des Sonderforschungsbereichs 666, Darmstadt, Sept 2010

    Google Scholar 

  • Landersheim V (2013) Numerische Schwingfestigkeitsbewertung inhomogener Spaltprofile mit dem örtlichen Dehnungskonzept. Dissertation, TU Darmstadt

    Google Scholar 

  • Langdon T, Furukawa M, Nemoto M et al (2000) Using equal-channel angular pressing for refining grain size. JOM 52(4):30–33

    Article  Google Scholar 

  • Manson SS (1965) Fatigue: a complex subject—some simple approximation. Exp Mech 5:193–226

    Article  Google Scholar 

  • Marquardt C, Zenner H (2003) Neurolebensdauer-Vorhaben Nr. 346, Forschungskuratorium Maschinenbau e.V., Frankfurt am Main

    Google Scholar 

  • Marquardt C, Bacher-Höchst M, Zenner H (2006) Prognose von Werkstoff- Bauteilwöhlerelinien mit künstlich neuronalen Netzen. DVM-Bericht 673:145–154

    Google Scholar 

  • Masendorf R (2000) Einfluss der Umformung auf die zyklischen Werkstoffkennwerte von Feinblech. Dissertation, TU Clausthal

    Google Scholar 

  • Meggiolaro MA, Castro JTP (2004) Statistical evaluation of strain life fatigue crack initiation predictions. Int J Fatigue 26:463–476

    Article  Google Scholar 

  • Müller C, Bohn B, Bruder E (2007) Severe plastic deformation by linear flow splitting. Mater Sci Eng Tech 38(10):842–854

    Google Scholar 

  • Müller C, Bohn T, Bruder E et al (2008) UFG microstructures by linear flow splitting. Mater Sci Forum 584–586:68–73

    Article  Google Scholar 

  • Nadaraya EA (1964) On estimating regression. Theor Probab Appl 9:141–142

    Article  Google Scholar 

  • Niehuesbernd J, Müller C, Pantleon W (2013) Quantification of local and global elastic anisotropy in ultrafine grained gradient microstructures, produced by linear flow splitting. Mater Sci Eng A 560:273–277

    Article  Google Scholar 

  • Niehuesbernd J, Bruder E, Müller C (2014) Influence of gradients in the elastic anisotropy on the reliability of residual stresses determined by the hole drilling method. Adv Mater Res 996:289–294

    Article  Google Scholar 

  • Niehuesbernd J, Monnerjahn V, Bruder E, Groche P, Müller C (2016) Improving the formability of linear flow split profiles by laser annealing. Material Wiss Werkst (Submitted for publication)

    Google Scholar 

  • Nommel A, Karin I, Hößbacher J (2012) Ein wahrer Antriebs-Kraftakt. Der Konstrukteur 2012(11):10–12

    Google Scholar 

  • Okayasu M, Sato K, Mizuno M et al (2008) Fatigue properties of ultra-fine grained dual phase ferrite/martensite low carbon steel. Int J Fatigue 30:1358–1365

    Article  Google Scholar 

  • Parzen E (1962) On the estimation of a probability density function and the mode. Ann Math Stat 33:1065–1076

    Article  Google Scholar 

  • Pavlina EV, Van Tyne C (2008) Correlation of yield strength and tensile strength with hardness for steels. JMEPEG 17:888–893

    Article  Google Scholar 

  • Prangnell P, Bowen J, Gholinia A (2001) The formation of submicron and nanocrystalline grain structures by severe plastic deformation. In: Dinesen et al. (ed.) Proceedings of the 22nd Risø International Symposium on Materials Science, Roskilde, 2001

    Google Scholar 

  • Ramberg W, Osgood WR (1943) Description of stress-strain curves by three parameters. Technical Note No. 902. National Advisory Committee for Aeronautics, Washington DC

    Google Scholar 

  • Rösler J, Harders H, Bäker M (2008) Mechanisches Verhalten der Werkstoffe. Vieweg+Teubner, Wiesbaden

    Google Scholar 

  • Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27:832–837

    Article  Google Scholar 

  • Schajer GS (1988) Measurement of non-uniform residual stresses using the hole drilling method. J Eng Mater Technol 110:338–343

    Article  Google Scholar 

  • Scherer A (1997) Neuronale Netze—Grundlagen und Anwendungen, Vieweg-Verlag

    Google Scholar 

  • Schwarz T (1996) Beitrag zur Eigenspannungsermittlung an isotropen, anisotropen sowie inhomogenen, schichtweise aufgebauten Werkstoffen mittels Bohrlochmethode und Ringkernverfahren. Dissertation, Staatliche Materialprüfanstalt (MPA), Universität Stuttgart

    Google Scholar 

  • Smith KN, Watson P, Topper TH (1970) A stress-strain function for the fatigue of metals. J Mater 5(4):767–778

    Google Scholar 

  • Song R, Ponge D, Raabe D et al (2006) Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater Sci Eng A 441:1–17

    Article  Google Scholar 

  • Valiev R (2004) Nanostructuring of metals by severe plastic deformation for advanced properties. Nat Mater 3:511–516

    Article  Google Scholar 

  • Valiev R, Langdon T (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981

    Article  Google Scholar 

  • Valiev R, Estrin Y et al (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58(4):33–39

    Article  Google Scholar 

  • Wagner C, Gramlich S, Kloberdanz H (2014) Entwicklung innovativer Produkte durch Verknüpfung von Funktionsintegration und Fertigungsprozessintegration. In: Krause D, Paetzold K, Wartzack S (eds) Proceedings of the 24th Symposium Design for X, Bamberg, 1–2 Oct 2014, pp 361–372

    Google Scholar 

  • Wagner C, Roos M, Gramlich S, Kloberdanz H (2016) Process integrated design guidelines: systematically linking manufacturing processes to product design. In: Marjanovic D, Storga M, Pavkovic N, Bojcetic N, Skec S (eds) Proceedings of the DESIGN 2016 14th International Design Conference, Dubrovnik, pp 739–748

    Google Scholar 

  • Wang YM, Ma E (2004) Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater Sci Eng A 375–377:46–52

    Article  Google Scholar 

  • Watson GS (1964) Smooth regression analysis. Sankhya Series A 26:359–372

    Google Scholar 

  • Wilamowski BM (2009) Neural network architectures and learning algorithms. IEEE Ind Electron Mag 3(4):56–63

    Article  Google Scholar 

  • Williams CR, Lee YL, Rilly JT (2002) A practical method for statistical analysis of strain-life fatigue data. Int J Fatigue 25:427–436

    Article  Google Scholar 

  • Zell A (1994) Simulation Neuronaler Netze, Oldenbourg-Verlag

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ahmels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ahmels, L. et al. (2017). Manufacturing Induced Properties: Determination, Understanding, and Beneficial Use. In: Groche, P., Bruder, E., Gramlich, S. (eds) Manufacturing Integrated Design. Springer, Cham. https://doi.org/10.1007/978-3-319-52377-4_4

Download citation

Publish with us

Policies and ethics