Skip to main content

Charge Patterns, Charge Separation

  • Chapter
  • First Online:
Chemical Electrostatics

Abstract

Excess charge is found under equilibrium and non-equilibrium conditions, in different systems. Charge patterns are observed in material systems in any size range, from molecules to bulk matter. Positive and negative charge separation, partition and/or segregation is caused by many agents: solvents, large electric fields, radiation, mechanical forces, Brownian motion/diffusion and gravity (sedimentation). It appears in transients like the liquid junction potentials or in equilibrium states, as in many soft matter self-assemblies. This chapter reviews the thermodynamic driving forces for the appearance of excess charge as well as non-equilibrium phenomena leading to metastable electrification, except triboelectricity phenomena and other newer mechanisms like hygroelectricity, that are treated in specific chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray JS, Politzer PT (2011) The electrostatic potential: an overview. Wiley Interdiscip Rev Comput Mol Sci 1(2):153–163

    Article  CAS  Google Scholar 

  2. Kobayashi M, Juillerat F, Galletto P, Bowen P, Borkovec M (2005) Aggregation and charging of colloidal silica particles: effect of particle size. Langmuir 21:5761–5769

    Article  CAS  Google Scholar 

  3. Galembeck A, Costa CAR et al (2001) Scanning electric potential microscopy imaging of polymers: electrical charge distribution in dielectrics. Polymer 42:4845–4851

    Article  CAS  Google Scholar 

  4. Burgo TAL, Ducati TRD et al (2012) Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces. Langmuir 28:7407–7416

    Article  CAS  Google Scholar 

  5. Housecroft C, Sharpe AG (2007) Inorganic chemistry. Prentice Hall, London

    Google Scholar 

  6. Olah GA, DeMember JR (1970) Friedel-Crafts chemistry. V. Isolation, carbon-13 nuclear magnetic resonance, and laser Raman spectroscopic study of dimethylhalonium fluoroantimonates. J Am Chem Soc 92(3):718–720

    Article  CAS  Google Scholar 

  7. Olah GA, Prakash GK et al (2009) Superacid chemistry. Wiley-Intercience, Hoboken, NJ, p 41

    Book  Google Scholar 

  8. Pauling L (1960) The nature of the chemical bond. Cornell University Press, Ithaca, NY, pp 98–100

    Google Scholar 

  9. Atkins P, Paula J (2014) Atkins’ physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  10. Cox BG (2013) Acids and bases: solvent effects on acid-base strength. Oxford University Press, Oxford

    Book  Google Scholar 

  11. Reichardt C, Welton T (2011) Solvents and solvent effects. In: Organic chemistry. Wiley, New York

    Google Scholar 

  12. Wadhwa CL (2007) High voltage engineering. New Age Science, pp 10–12.

    Google Scholar 

  13. Kestelman VN, Pinchuk LS et al (2000) Electrets in engineering: fundamentals and applications. Springer, New York

    Book  Google Scholar 

  14. Furube A, Du LH et al (2007) Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J Am Chem Soc 129:14852–14853

    Article  CAS  Google Scholar 

  15. Su YH, Ke Y et al (2012) Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell. Light Sci Appl 1(e14):1–5

    Google Scholar 

  16. Wang Q, Ito S et al (2006) Characteristics of high efficiency dye-sensitized solar cells. J Phys Chem B 110:25210–22522

    Article  CAS  Google Scholar 

  17. Kampert KH, Watson AA (2012) Extensive air showers and ultra high-energy cosmic rays: a historical review. Eur Phys J H 37:359–412

    Article  Google Scholar 

  18. Gurevich AV, Antonova VP et al (2013) Cosmic rays and thunderstorms at the Tien-Shan mountain station. J Phys Conf Ser 409:012234

    Article  Google Scholar 

  19. Heinicke G (1984) Tribochemistry. Carl Hanser Verlag, München–Wien

    Google Scholar 

  20. Baláž P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin

    Google Scholar 

  21. Lyklema J (1995) Fundamentals of interface and colloid science: solid–liquid interfaces, vol. 2. Academic, New York, p 3.208

    Google Scholar 

  22. Tolman RC (1911) The electromotive force produced in solutions by centrifugal action. J Am Chem Soc 33:121–147

    Article  Google Scholar 

  23. Ohshima H (1998) Sedimentation potential in a concentrated suspension of spherical colloidal particles. J Colloid Interf Sci 208:295–301

    Article  CAS  Google Scholar 

  24. Barry PH, Lynch JW (1991) Liquid junction potentials and small cell effects in patch-clamp analysis. J Membr Biol 121:101–117

    Article  CAS  Google Scholar 

  25. Dryfe RAWI (2007) In: Zosky CG (ed) Handbook of electrochemistry. Elsevier Science, Amsterdam, pp 849–877

    Chapter  Google Scholar 

  26. Bunakova LV, Khanova LA et al (2004) Water-solvent liquid junction potential for some low-dielectric solvents. J New Mater Electrochem Syst 7:241–245

    CAS  Google Scholar 

  27. Munson MS, Cabrera CR et al (2002) Passive electrophoresis in microchannels using liquid junction potentials. Electrophoresis 23:2642–2652

    Article  CAS  Google Scholar 

  28. Graham DJ, Jaselskis B et al (2013) Development of the glass electrode and the pH response. J Chem Educ 90(3):345–351

    Article  CAS  Google Scholar 

  29. Rover L, Garcia CAB et al (1998) Acetylsalicylic acid determination in pharmaceutical samples by FIA-potentiometry using a salicylate-sensitive tubular electrode with an ethylene-vinyl acetate membrane. Anal Chim Acta 366:103–109

    Article  CAS  Google Scholar 

  30. Wright SH (2004) Generation of resting membrane potential. Adv Phys Educ 28(4):139–142

    Article  Google Scholar 

  31. Glover PWJ (2015) Petrophysics MSc Course. Notes: the spontaneous potential log. Chapter 18. Department of Geology and Petroleum Geology, University of Aberdeen, UK, p 218. https://groups.google.com/forum/#!msg/msc13iitkgp/NgvmuYtZm6A/ESXFV8LfSAMJ. Accessed 20 Sept 2016

  32. Fendler H, Fendler EJ (1975) Catalysis in micellar and macromolecular systems. Chapter 2. Academic, New York, p 19

    Book  Google Scholar 

  33. Job G, Herrmann F (2006) Chemical potential—a quantity in search of recognition. Eur J Phys 27:353–371

    Article  CAS  Google Scholar 

  34. Barnett MW, Larkman PM (2007) The action potential. Pract Neurol 7(3):192–197

    Google Scholar 

  35. Quina FH (2016) Modeling chemical reactivity in ionic detergent micelles: a review of fundamentals. J Brazil Chem Soc 27(2):267–277

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Galembeck, F., A. L. Burgo, T. (2017). Charge Patterns, Charge Separation. In: Chemical Electrostatics. Springer, Cham. https://doi.org/10.1007/978-3-319-52374-3_5

Download citation

Publish with us

Policies and ethics