Skip to main content

Instrumentation

  • Chapter
  • First Online:
Book cover Chemical Electrostatics

Abstract

The change underwent by electrostatics in the last few decades was made possible by recent experimental developments, both radical and incremental. This chapter is a report on instruments that played a decisive role in this process with comments on their possibilities and limitations. A radical development was the introduction of various modes of scanning electric probe microscopy. These allow the measurement of charge, potential, capacitance, conductivity, and other related parameters with spatial resolution in the nanometer range. These techniques revealed previously unsuspected patterns of fixed charge distributed on insulator and even in metal and semiconductor surfaces at the nanoscale, forcing researchers to reexamine well-established concepts. Spatial resolution in charge and potential measurement at the macroscale was also achieved, thanks to important developments in macroscopic probes, especially in the century-old Kelvin electrode. Impact of these developments went beyond electrostatics because electrical measurements have great comparative advantages over force, optical, thermal, and radiation measurement techniques, concerning both accuracy and precision. This is evidenced by the ubiquity of the Faraday cups used in instruments prominent in every branch of science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang JS, Kelly AJ, Crowley JM (1995) Handbook of electrostatic processes. Marcel Dekker, New York

    Google Scholar 

  2. Llovera P, Molinié P, Soria A, Quijano A (2009) Measurements of electrostatic potentials and electric fields in some industrial environments. J Electrost 67:457–461

    Article  Google Scholar 

  3. Appel MF, McKeachie JR, van der Veer WE, Benter T (2004) Simple induction probe electric field meter for the detection of electrical fields generated by ion-optical electrodes. Rev Sci Instrum 75:2603

    Article  CAS  Google Scholar 

  4. Blackburn JA (2001) Modern instrumentation for scientists and engineers. Springer, New York, p 204

    Book  Google Scholar 

  5. Noras MA (2002) Non-contact surface charge/voltage measurements. Capacitive probe—principle of operation. Trek Application Note 3001, Trek, Lockport.

    Google Scholar 

  6. Noras MA (2013) Charge detection methods for dielectrics—overview. Trek Application Note 3005, Trek, Lockport.

    Google Scholar 

  7. Sirohi D et al (2016) The 3.8 angstrom resolution cryo-EM structure of Zika virus. Science 352:467–470

    Article  CAS  Google Scholar 

  8. McNaught AD, Wilkinson A (1997) IUPAC Compendium of chemical terminology (the “Gold Book”), 2nd edn. Blackwell Scientific, Oxford

    Google Scholar 

  9. Flagan RC (1998) History of electrical aerosol measurements. Aerosol Sci Technol 28(4):301–380

    Article  CAS  Google Scholar 

  10. Karger CP, Jaekel O, Palmans H, Kanai T (2010) Dosimetry for ion beam radiotherapy. Phys Med Biol 55:R193–R234

    Article  Google Scholar 

  11. Brown KL, Tautfest GW (1956) Faraday-cup monitors for high-energy electron beams. Rev Sci Instrum 27(9):696–702

    Article  Google Scholar 

  12. Berezov R et al (2016) High intensity proton injector for facility of antiproton and ion research. Rev Sci Instrum 87:02A705

    Article  CAS  Google Scholar 

  13. Zhao HY et al (2014) The study towards high intensity high charge state laser ion sources. Rev Sci Instrum 85:02B910

    Article  CAS  Google Scholar 

  14. Naik S, Sarkar S, Hancock B, Rowland M, Abramov Y, Yu W, Chaudhuri B (2016) An experimental and numerical modeling study of tribocharging in pharmaceutical granular mixtures. Powder Technol 297:211–219

    Article  CAS  Google Scholar 

  15. Ogilvie KW et al (1995) SWE, a comprehensive plasma instrument for the WIND spacecraft. Space Sci Rev 71:55–77

    Article  Google Scholar 

  16. Prokůpek J et al (2014) Development and first experimental tests of Faraday cup array. Rev Sci Instrum 85:013302

    Article  Google Scholar 

  17. https://www.faraday-cup.com/index.html, Accessed September 2016.

  18. Amin MS, Peterson TF, Zahn M (2006) Advanced Faraday cage measurements of charge and open-circuit voltage using water dielectrics. J Electrostat 64(7–9):424–430

    Article  Google Scholar 

  19. Nakayama Y, Sohda Y, Ohta H, Saitou N, Muraki M, Takakuwa M (2004) Electron beam monitoring sensor and electron beam monitoring method. US Patent Appl US20040026627, A1.

    Google Scholar 

  20. Kelvin L (1898) Contact electricity of metals. Philos Mag 46:82–120

    Article  Google Scholar 

  21. Zisman WA (1932) A new method of measuring contact potential differences in metals. Rev Sci Instrum 3:367–368

    Article  Google Scholar 

  22. Oliveira ON, Bonardi C (1997) The surface potential of Langmuir monolayers revisited. Langmuir 13:5920–5924

    Article  CAS  Google Scholar 

  23. Karakashev SI, Nguyen AV, Miller JD (2008) In: Narayanan R (ed) Interfacial processes and molecular aggregation of surfactants, Advances in polymer science, vol 218, pp 25–55

    Chapter  Google Scholar 

  24. Galembeck F, Costa CAR (2006) Electric scanning probe techniques: Kelvin force microscopy and electric force microscopy. In: Somasundaran P (ed) Encyclopedia of surface and colloid science, vol 3, 2nd edn. CRC Press, Boca Raton, pp 1874–1883

    Google Scholar 

  25. Moos R et al (2009) Solid state gas sensor research in Germany—a status report. Sensors 9(6):4323–4365

    Article  CAS  Google Scholar 

  26. Bârsan N, Weimar U (2003) Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J Phys Condens Matter 15:R813

    Article  Google Scholar 

  27. Appleyard SFJ, Day SR, Pickford RD, Willis MR (2000) Organic electroluminescent devices: enhanced carrier injection using SAM derivatized ITO electrodes. J Mater Chem 10:169–173

    Article  CAS  Google Scholar 

  28. Burgo TAL (2013) Triboeletrização de Polímeros Dielétricos: Mosaicos Macroscópicos de Carga e seus Efeitos sobre as Forças de Atrito em Interfaces, Ph.D. thesis, Unicamp, Campinas.

    Google Scholar 

  29. Baikie ID, Smith PJS, Porterfield DM, Estrup PJ (1999) Multitip scanning bio-Kelvin probe. Rev Sci Instrum 70:1842–1850

    Article  CAS  Google Scholar 

  30. Söngen H, Nalbach M, Adam H, Kühnle A (2016) Three-dimensional atomic force microscopy mapping at the solid-liquid interface with fast and flexible data acquisition. Rev Sci Instrum 87:063704

    Article  Google Scholar 

  31. Streicher F, Sadewasser S, Lux-Steiner MC (2009) Surface photovoltage spectroscopy in a Kelvin probe force microscope under ultrahigh vacuum. Rev Sci Instrum 80:013907

    Article  CAS  Google Scholar 

  32. Johansen MR, Mackey PJ, Holbert E, Clements JS, Calle CI (2013) Characterizing the performance of the wheel electrostatic spectrometer. Proceedings of the ESA Annual Meeting on Electrostatics, G-Session: Special Session on Electrostatic Developments at NASA, G2, 1–7.

    Google Scholar 

  33. Budakian R, Putterman SJ (2000) Correlation between charge transfer and stick-slip friction at a metal-insulator interface. Phys Rev Lett 85:1000–1003

    Article  CAS  Google Scholar 

  34. Akbulut M, Godfrey Alig AR, Israelachvili J (2006) Triboelectrification between smooth metal surfaces coated with self-assembled monolayers (SAMs). J Phys Chem B 110:22271–22278

    Article  CAS  Google Scholar 

  35. Escobar JV, Chakravarty A, Putterman SJ (2013) Effect of anodic oxidation of single crystal boron doped diamond on tribocurrent and macroscopic friction force with metals. Diam Relat Mater 36:8–15

    Article  CAS  Google Scholar 

  36. Burgo TAL, Erdemir A (2014) Bipolar tribocharging signal during friction force fluctuations at metal-insulator interfaces. Angew Chemie Int Ed 53:12101–12105

    Article  CAS  Google Scholar 

  37. Wiles JA, Grzybowski BA, Winkleman A, Whitesides GM (2003) A tool for studying contact electrification in systems comprising metals and insulating polymers. Anal Chem 75:4859–4867

    Article  CAS  Google Scholar 

  38. Junninen H, Ehn M, Petäjä T, Luosuvärji L, Kotiaho T, Kostiainen R, Rohner U, Gonin M, Fuhrer K, Kulmala M, Worsnop DR (2010) A high-resolution mass spectrometer to measure atmospheric ion composition. Atmos Meas Tech 3:1039–1053

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Galembeck, F., A. L. Burgo, T. (2017). Instrumentation. In: Chemical Electrostatics. Springer, Cham. https://doi.org/10.1007/978-3-319-52374-3_14

Download citation

Publish with us

Policies and ethics