Skip to main content

Self-assembly

  • Chapter
  • First Online:
Chemical Electrostatics

Abstract

Self-assembly is the most powerful tool of nanotechnology and it is largely dependent on electrostatic interactions between particles, molecules, ions and macroscopic surfaces with a strong participation of solvent water. Its importance was revealed during the elucidation of biological structures, from the smaller proteins to ribosomes, cell nuclei and membranes where electrostatic interactions are energetically as important as hydrophobic interactions and hydrogen bonding. In the past 20 years, electrostatic self-assembly produced a large number of marvelous examples of complex structures endowed with unique functions. It has also been combined to stepwise processing to create unique new structures using processes like layer-by-layer fabrication and microfluidics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B 237:37–72

    Article  Google Scholar 

  2. Prigogine I, Nicollis G (1977) Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. Wiley, New York

    Google Scholar 

  3. Liesegang RE (1896) Naturwiss. Wochenschr 11:353

    Google Scholar 

  4. Ohkawa M, Yamashita Y et al (2000) Hematite in pyrophyllite ore deposits, Shobara district, southwestern Japan. Miner Petrol 70:15–23

    Article  CAS  Google Scholar 

  5. Wolfram S (2002) A new kind of science. Wolfram Research, Champaign

    Google Scholar 

  6. Thurmer DJ, Bufon CC et al (2010) Nanomembrane-based mesoscopic superconducting hybrid junctions. Nano Lett 10:3704–3709

    Article  CAS  Google Scholar 

  7. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  CAS  Google Scholar 

  8. Clark TD, Tien J et al (2001) Self-assembly of 10-μm-sized objects into ordered three-dimensional arrays. J Am Chem Soc 123:7677–7692

    Article  CAS  Google Scholar 

  9. Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci U S A 99(8):4769–4774

    Article  CAS  Google Scholar 

  10. Cann JR (1970) Interacting macromolecules: the theory and practice of their electrophoresis, ultracentrifugation, and chromatography. Academic, New York

    Google Scholar 

  11. Braga F, Mattos OA et al (2015) Diffusion limited aggregation of particles with different sizes: fractal dimension change by anisotropic growth. Phys A 429:38–34

    Article  Google Scholar 

  12. Esperidião MCA, Galembeck F (1993) Polypropylene (high density polyethylene) precipitation from stirred solutions. Eur Polym J 29(7):993–997

    Article  Google Scholar 

  13. Adam NK (1941) The physics and chemistry of surfaces, 3rd edn. OUP, Oxford

    Google Scholar 

  14. Whitesides GM (1995) Self-assembling materials. Sci Am 273(3):146–149

    Google Scholar 

  15. Mitra RC (2010) Understanding the role of electrostatics on protein-protein binding. M.Sc. thesis, Clemson University

    Google Scholar 

  16. Kastritis PL, Bonvin AMJJ (2013) On the binding affinity of macromolecular interactions: daring to ask why proteins interact. J R Soc Interface 10:20120835

    Article  Google Scholar 

  17. Berg MJ, Tymoczko JL et al (2011) Biochemistry. Palgrave

    Google Scholar 

  18. Politzer P, Murray JS et al (2001) Molecular surface electrostatic potentials in relation to noncovalent interactions in biological systems. Int J Quantum Chem 85:676–684

    Article  CAS  Google Scholar 

  19. Cherstvy AG (2015) Electrostatic interactions in dense DNA phases and protein-DNA complexes. In: Schulz N (ed) Advances in electrostatics. Clanrye, Jersey, chapter 1

    Google Scholar 

  20. Khan IJ, Stapleton et al. (2015) Electrostatics in protein engineering and design. In: Schulz N (ed) Advances in electrostatics. Clanrye, Jersey, chapter 3

    Google Scholar 

  21. Stokes RJ, Evans DF (1997) Fundamentals of interfacial engineering. Wiley, p 217

    Google Scholar 

  22. Koetz J, Günther C et al (2003) Polyelectrolyte-induced structural changes in the isotropic phase of the sulfobetaine/pentanol/toluene/water system. Prog Colloid Polym Sci 122:27–36

    Article  CAS  Google Scholar 

  23. Kötz J, Kosmella S et al (2001) Self-assembled polyelectrolyte systems. Prog Polym Sci 26:1199–1232

    Article  Google Scholar 

  24. Teixeira Neto E, Leite CAP et al (2000) Latex fractionation by sedimentation and colloidal crystallization: the case of poly(styrene-co-acrylamide). J Colloid Interface Sci 231:182–189

    Article  CAS  Google Scholar 

  25. Cardoso ALH, Leite CAP et al (1998) Easy polymer latex self-assembly and colloidal crystal formation: the case of poly[styrene-co-(2-hydroxyethyl methacrylate)]. Colloids Surf A Physicochem Eng Asp 144:207–217

    Article  Google Scholar 

  26. Denkov ND, Velev OD et al (1993) Two-dimensional crystallization. Nature 361(6407):26–26

    Article  Google Scholar 

  27. Liljeström V, Seitsonen J et al (2015) Electrostatic self-assembly of soft matter nanoparticle cocrystals with tunable lattice parameters. ACS Nano 9(11):11278–11285

    Article  Google Scholar 

  28. Tien J, Terfort A (1997) Microfabrication through electrostatic self-assembly. Langmuir 13:5349–5355

    Article  CAS  Google Scholar 

  29. Carroll JB, Frankamp BL et al (2004) Electrostatic self-assembly of structured gold nanoparticle/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. J Mater Chem 14:690–694

    Article  CAS  Google Scholar 

  30. Wang L, Sánchez S (2015) Self-assembly via microfluidics. Lab Chip 15:4383–4386

    Article  CAS  Google Scholar 

  31. Crane NB, Onen O et al (2013) Fluidic assembly at the microscale: progress and prospects. Microfluid Nanofluid 14:383–419

    Article  CAS  Google Scholar 

  32. Parker RM et al (2015) Electrostatically directed self-sssembly of ultrathin supramolecular polymer microcapsules. Adv Funct Mater 25:4091–4100

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Galembeck, F., A. L. Burgo, T. (2017). Self-assembly. In: Chemical Electrostatics. Springer, Cham. https://doi.org/10.1007/978-3-319-52374-3_10

Download citation

Publish with us

Policies and ethics