Skip to main content

Probability and Statistical Methods

  • Chapter
  • First Online:
Book cover Flood Modeling, Prediction and Mitigation
  • 1166 Accesses

Abstract

In flood frequency and discharge calculations, there are two different treatment procedures as either probabilistic or deterministic approaches. So far, the previous chapters are concerned with hydrological deterministic methods, but this chapter provides information about the probabilistic, statistical, and stochastic uncertain methods. The very bases of these approaches are the annual, partial, or hybrid selections from a given time series of extreme discharge magnitudes. The selected flood discharges are fitted to the most suitably representative probability distribution functions for risk-level calculations . Most often, the flood discharges for two-year, five-year, 10-year, 25-year, 50-year, 100-year, and 500-year return periods are sought which correspond to 0.50, 0.20, 0.10, 0.04, 0.01, and 0.002 probability exceedence (risk) levels. Explanation of various probability papers and their theoretical background information are exposed with some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Zhrani. (2007). Bridge design.

    Google Scholar 

  • Bayazıt, M., Avcı, I., & Şen, Z. (1997). Hidroloji Uygulamaları. İstanbul Teknik Üniversitesi. Hydrology Applications, Istanbul Technical University, 280 pp.

    Google Scholar 

  • Benjamin, J. R., & Cornell, C. A. (1970). Probability, statistics, and decision for civil engineers. Dover Books on Engineering.

    Google Scholar 

  • Chow, V. T. (1964). Handbook of applied hydrology. New York: McGraw-Hill.

    Google Scholar 

  • Cramer, H., & Leadbetter, M. R. (1967). Stationary and related stochastic processes. New York, USA: Wiley.

    Google Scholar 

  • Farmer, J. D., & Sidorowich, J. J. (1987). Predicting chaotic time series. Physical Review Letters, 59, 845–848.

    Article  Google Scholar 

  • Feller, W. (1968). An introduction to probability theory and its applications (3rd ed., Vol. I). Wiley.

    Google Scholar 

  • Fisher, R. A., & Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society, 24, 180–290.

    Article  Google Scholar 

  • Flohn, H. (1989). Ändert sich unser Klima? Mannheimer Forum, 88/89 (Boehringer Mannheim GmbH), 135–189.

    Google Scholar 

  • Foster, H. A. (1924). Theoretical frequency curves and the application to engineering problems, Transactions of the American Society of Civil Engineers, 87, 142– 203.

    Google Scholar 

  • Gumbel, E. J. (1958). Statistics of extremes. New York: Columbia University Press.

    Google Scholar 

  • Gupta, V. L. (1973). Information content of time-variant data. Journal of Hydraulics Division, ASCE, 89(HY3), Proc. Paper 9615:383–393.

    Google Scholar 

  • Haan, C. T. (1977). Statistical methods in hydrology. Iowa state university press.

    Google Scholar 

  • Hazen, A. (1914). Storage to be provided in impounding reservoirs for municipal water supply. Trans. ASCE, 77, 1308.

    Google Scholar 

  • Jayawardena, A. W., & Lai, F. (1994). Analysis and prediction of chaos in rainfall and stream flow time series. Journal of Hydrology, 153, 23–52.

    Article  Google Scholar 

  • Jenkins, W. L. (1955). An improved method for tetrachoric r. Psychometrika, 20(3), 253–258.

    Article  Google Scholar 

  • Jenkinson, A. F. (1969). Estimation of maximum floods, chap. 5. World Meteorological Office Technical Note 98.

    Google Scholar 

  • Kite, G. W. (1977). Frequency and risk analysis in hydrology. Fort Collins CO: Water Resources Publications.

    Google Scholar 

  • Leopold, L. B., Wolman, M. C., & Miller, J. P. (1964). Fluvial processes in geomorphology. San Francisco (CA): W.H. Freeman and Co.

    Google Scholar 

  • Linsley, R. K., Kohler, M. A., & Paulhus, J. L. H. (1982). Hydrology for engineers (3rd ed., 508 pp). New York: McGraw-Hill.

    Google Scholar 

  • Lorenz, E. N. (1995). Climate is what you expect, edited, p. 55 pp, http://www.aps4.mit.edu/research/Lorenz/publications.htm. Available 16 May 2012.

  • Lovejoy, S., & Schertzer, D. (1986). Scale invariance in climatological temperatures and 165 the spectral plateau. Annales Geophysicae, 4B, 401–410.

    Google Scholar 

  • Mandelbrot, B. B., & Wallis, J. R. (1968). Noah, Joseph, and operational hydrology. Water Resources Research, 4(5), 909–918.

    Google Scholar 

  • Mandelbrot, B. B., & Wallis, J. R. (1969a). Computer experiments with fractional Gaussian noises. Water Resource Research, 1, 228–267.

    Article  Google Scholar 

  • Mandelbrot, B. B., & Wallis, J. R. (1969b). Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resource Research, 5(5), 967–988.

    Article  Google Scholar 

  • Mandelbrot, B. B., & Wallis, J. R. (1969c). Some long-run properties of geophysical records”. Water Resource Research, 5(2), 321–340.

    Article  Google Scholar 

  • Mejia, J. M., Rodriguez-Iturbe, I., & Dawdy, D. R. (1972). Streamflow simulation 2: The broken line process as a potential model for hydrologic simulation. Water Resource Research, 8(4), 931–941.

    Article  Google Scholar 

  • Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., & Stouffer, R. J. (2008). Stationarity is dead: Whither water management? Science, 319, 573–574.

    Google Scholar 

  • Mood, A. M. (1940). The distribution theory of runs. The Annals of Mathematical Statistics, 11, 367–392.

    Article  Google Scholar 

  • O’Connell, P. E. (1971). A simple stochastic modelling of Hurst’s law. Mathematical Models in Hydrology: Proceedings of the Warsaw Symposium, 1, 169–187.

    Google Scholar 

  • Pearson, K. (1930). Tables of statisticians and biometricians, Part I (3rd ed.). London: The Biometric Laboratory, University College; (printed by Cambridge University Press, London).

    Google Scholar 

  • Rodriguez-Iturbe, I., Cox, D. R., & Isham, V. (1987a). Some models for rainfall based on stochastic point processes. Proceedings of the Royal Society of London, Ser. A, 410, 269–288.

    Article  Google Scholar 

  • Rodriguez-Iturbe, I., Febres de Power, B., & Valdes, J. B. (1987b). Rectangular pulse point process models for rainfall: Analysis of empirical data. Journal Geophysical Research, 92(D8), 9645–9656.

    Google Scholar 

  • Saldarriaga, J., & Yevjevich, V. (1970). Application of run lengths to hydrologic series. Hydrology Paper no. 40. Fort Collins, Colorado, USA: Colorado State University.

    Google Scholar 

  • Şen, Z. (1974) Small sample properties of stationary stochastic processes and the hurst phenomenon in hydrology. Unpublished Ph. D. Dissertation. University of London, Imperial College of Science and Technology, 257 pp.

    Google Scholar 

  • Şen, Z., (1976). Wet and dry periods of annual flow series. Journal of Hydraulics Division, ASCE, 102(HY10), Proc. Paper 12457, 1503–1514.

    Google Scholar 

  • Şen, Z. (1978). Autorun analysis of hydrologic time series. Journal of Hydrology, 36, 75–85.

    Article  Google Scholar 

  • Şen, Z. (1991). Probabilistic modeling of crossing in small samples and application of runs to hydrology. Journal of Hydrology, 124, 345–362.

    Article  Google Scholar 

  • Şen, Z. (2015). Applied drought modeling, prediction, and mitigation (p. 472). Elsevier Publication.

    Google Scholar 

  • Spiegel, M.R. (1965). Schaum’s outline series – Laplace transforms. McGraw Hill Book Co., New York, USA.

    Google Scholar 

  • Thomas, H. A., & Fiering, M. B. (1962). Mathematical synthesis of streamflow sequences for the analysis of river basins by simulation. In: A. Maas et al. (Ed.), Design of water resources systems (Chapter 12). Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Yen, B. C. (1970). Risks in hydrologic design of engineering projects. Journal of Hydraulics Division, ASCE, 96(HY4), Proc. Paper 7229, 959–966.

    Google Scholar 

  • Yevjevich, V. (1972). Probability and statistics in hydrology. Fort Collins CO: Water Resources Publications.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zekâi Şen .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Şen, Z. (2018). Probability and Statistical Methods. In: Flood Modeling, Prediction and Mitigation. Springer, Cham. https://doi.org/10.1007/978-3-319-52356-9_6

Download citation

Publish with us

Policies and ethics