Skip to main content

The MIF-CD74 Inflammatory Axis in Alphaviral Infection

  • Chapter
  • First Online:
  • 507 Accesses

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

The expansion of mosquito-borne viral (arboviral) arthritis poses a significant threat to human health worldwide. Clinical reports show that arboviral arthritis can be persistent and debilitating, with evidence of bone pathology. As part of the Togaviridae family, alphaviruses are mosquito-borne viruses that are widely distributed throughout the globe causing extensive morbidity and mortality. Despite this, very little is known about the pathogenesis of disease caused by alphaviruses. It has been shown that macrophages play a crucial role in the development of alphaviral arthritis. Infection causes macrophage activation and the release of macrophage inhibitory factor (MIF), which subsequently plays a pivotal role in alphavirus-induced arthritis by regulating the expression of pro-inflammatory factors. This chapter discusses the role of the MIF-CD74 axis in the development of alphavirus arthritis and the therapeutic potential of antagonists in the treatment of alphaviral arthropathies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jose J, Snyder JE, Kuhn RJ (2009) A structural and functional perspective of alphavirus replication and assembly. Future Microbiol 4:837–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Strauss JH, Strauss EG (1994) The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58:491–562

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zacks MA, Paessler S (2010) Encephalitic alphaviruses. Vet Microbiol 140:281–286

    Article  CAS  PubMed  Google Scholar 

  4. Ryman KD, Klimstra WB (2008) Host responses to alphavirus infection. Immunol Rev 225:27–45

    Article  CAS  PubMed  Google Scholar 

  5. Vega-Rua A, Zouache K, Girod R, Failloux AB, Lourenco-de-Oliveira R (2014) High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. J Virol 88:6294–6306

    Article  PubMed  PubMed Central  Google Scholar 

  6. Harley D, Sleigh A, Ritchie S (2001) Ross River virus transmission, infection, and disease: a cross-disciplinary review. Clin Microbiol Rev 14:909–932, table of contents

    Google Scholar 

  7. Staikowsky F, Talarmin F, Grivard P, Souab A, Schuffenecker I, Le Roux K, Lecuit M, Michault A (2009) Prospective study of Chikungunya virus acute infection in the Island of La Reunion during the 2005–2006 outbreak. PLoS One 4:e7603

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tesh RB (1982) Arthritides caused by mosquito-borne viruses. Annu Rev Med 33:31–40

    Article  CAS  PubMed  Google Scholar 

  9. Sissoko D, Malvy D, Ezzedine K, Renault P, Moscetti F, Ledrans M, Pierre V (2009) Post-epidemic Chikungunya disease on Reunion Island: course of rheumatic manifestations and associated factors over a 15-month period. PLoS Negl Trop Dis 3:e389

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hoarau JJ, Jaffar Bandjee MC, Krejbich Trotot P, Das T, Li-Pat-Yuen G, Dassa B, Denizot M, Guichard E, Ribera A, Henni T, Tallet F, Moiton MP, Gauzere BA, Bruniquet S, Jaffar Bandjee Z, Morbidelli P, Martigny G, Jolivet M, Gay F, Grandadam M, Tolou H, Vieillard V, Debre P, Autran B, Gasque P (2010) Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J Immunol 184:5914–5927

    Article  CAS  PubMed  Google Scholar 

  11. Chen W, Foo S-S, Li RW, Smith PN, Mahalingam S (2014) Osteoblasts from osteoarthritis patients show enhanced susceptibility to Ross River virus infection associated with delayed type I interferon responses. Virol J 11:189

    PubMed  PubMed Central  Google Scholar 

  12. Soden M, Vasudevan H, Roberts B, Coelen R, Hamlin G, Vasudevan S, La Brooy J (2000) Detection of viral ribonucleic acid and histologic analysis of inflamed synovium in Ross River virus infection. Arthritis Rheum 43:365–369

    Article  CAS  PubMed  Google Scholar 

  13. Nakaya HI, Gardner J, Poo YS, Major L, Pulendran B, Suhrbier A (2012) Gene profiling of Chikungunya virus arthritis in a mouse model reveals significant overlap with rheumatoid arthritis. Arthritis Rheum 64:3553–3563

    Article  CAS  PubMed  Google Scholar 

  14. Assuncao-Miranda I, Bozza MT, Da Poian AT (2010) Pro-inflammatory response resulting from sindbis virus infection of human macrophages: implications for the pathogenesis of viral arthritis. J Med Virol 82:164–174

    Article  CAS  PubMed  Google Scholar 

  15. Herrero LJ, Nelson M, Srikiatkhachorn A, Gu R, Anantapreecha S, Fingerle-Rowson G, Bucala R, Morand E, Santos LL, Mahalingam S (2011) Critical role for macrophage migration inhibitory factor (MIF) in Ross River virus-induced arthritis and myositis. Proc Natl Acad Sci U S A 108:12048–12053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wauquier N, Becquart P, Nkoghe D, Padilla C, Ndjoyi-Mbiguino A, Leroy EM (2011) The acute phase of Chikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation. J Infect Dis 204:115–123

    Article  CAS  PubMed  Google Scholar 

  17. Chopra A, Anuradha V, Lagoo-Joshi V, Kunjir V, Salvi S, Saluja M (2008) Chikungunya virus aches and pains: an emerging challenge. Arthritis Rheum 58:2921–2922

    Article  PubMed  Google Scholar 

  18. Lidbury BA, Simeonovic C, Maxwell GE, Marshall ID, Hapel AJ (2000) Macrophage-induced muscle pathology results in morbidity and mortality for Ross River virus-infected mice. J Infect Dis 181:27–34

    Article  CAS  PubMed  Google Scholar 

  19. Lidbury BA, Rulli NE, Suhrbier A, Smith PN, McColl SR, Cunningham AL, Tarkowski A, van Rooijen N, Fraser RJ, Mahalingam S (2008) Macrophage-derived proinflammatory factors contribute to the development of arthritis and myositis after infection with an arthrogenic alphavirus. J Infect Dis 197:1585–1593

    Article  CAS  PubMed  Google Scholar 

  20. Chen W, Foo SS, Taylor A, Lulla A, Merits A, Hueston L, Forwood MR, Walsh NC, Sims NA, Herrero LJ, Mahalingam S (2015) Bindarit, an inhibitor of monocyte chemotactic protein synthesis, protects against bone loss induced by chikungunya virus infection. J Virol 89:581–593

    Article  PubMed  Google Scholar 

  21. Rulli NE, Guglielmotti A, Mangano G, Rolph MS, Apicella C, Zaid A, Suhrbier A, Mahalingam S (2009) Amelioration of alphavirus-induced arthritis and myositis in a mouse model by treatment with bindarit, an inhibitor of monocyte chemotactic proteins. Arthritis Rheum 60:2513–2523

    Article  CAS  PubMed  Google Scholar 

  22. Taylor A, Herrero LJ, Rudd PA, Mahalingam S (2015) Mouse models of alphavirus-induced inflammatory disease. J Gen Virol 96:221–238

    Article  CAS  PubMed  Google Scholar 

  23. Calandra T, Roger T (2003) Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 3:791–800

    Article  CAS  PubMed  Google Scholar 

  24. Shi C, Pamer EG (2011) Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11:762–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen LC, Lei HY, Liu CC, Shiesh SC, Chen SH, Liu HS, Lin YS, Wang ST, Shyu HW, Yeh TM (2006) Correlation of serum levels of macrophage migration inhibitory factor with disease severity and clinical outcome in dengue patients. Am J Trop Med Hyg 74:142–147

    CAS  PubMed  Google Scholar 

  26. Arjona A, Foellmer HG, Town T, Leng L, McDonald C, Wang T, Wong SJ, Montgomery RR, Fikrig E, Bucala R (2007) Abrogation of macrophage migration inhibitory factor decreases West Nile virus lethality by limiting viral neuroinvasion. J Clin Invest 117:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, Delohery T, Chen Y, Mitchell RA, Bucala R (2003) MIF signal transduction initiated by binding to CD74. J Exp Med 197:1467–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shin H, Blackburn SD, Intlekofer AM, Kao C, Angelosanto JM, Reiner SL, Wherry EJ (2009) A role for the transcriptional repressor Blimp-1 in CD8(+) T cell exhaustion during chronic viral infection. Immunity 31:309–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Herrero LJ, Sheng KC, Jian P, Taylor A, Her Z, Herring BL, Chow A, Leo YS, Hickey MJ, Morand EF, Ng LF, Bucala R, Mahalingam S (2013) Macrophage migration inhibitory factor receptor CD74 mediates alphavirus-induced arthritis and myositis in murine models of alphavirus infection. Arthritis Rheum 65:2724–2736

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L, Kooistra T, Fingerle-Rowson G, Ghezzi P, Kleemann R, McColl SR, Bucala R, Hickey MJ, Weber C (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13:587–596

    Article  CAS  PubMed  Google Scholar 

  31. Fan H, Hall P, Santos LL, Gregory JL, Fingerle-Rowson G, Bucala R, Morand EF, Hickey MJ (2011) Macrophage migration inhibitory factor and CD74 regulate macrophage chemotactic responses via MAPK and Rho GTPase. J Immunol 186:4915–4924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schwartz V, Lue H, Kraemer S, Korbiel J, Krohn R, Ohl K, Bucala R, Weber C, Bernhagen J (2009) A functional heteromeric MIF receptor formed by CD74 and CXCR4. FEBS Lett 583:2749–2757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morrison TE, Fraser RJ, Smith PN, Mahalingam S, Heise MT (2007) Complement contributes to inflammatory tissue destruction in a mouse model of Ross River virus-induced disease. J Virol 81:5132–5143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morrison TE, Simmons JD, Heise MT (2008) Complement receptor 3 promotes severe Ross River virus-induced disease. J Virol 82:11263–11272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taylor A, Sheng KC, Herrero LJ, Chen W, Rulli NE, Mahalingam S (2013) Methotrexate treatment causes early onset of disease in a mouse model of Ross River virus-induced inflammatory disease through increased monocyte production. PLoS One 8:e71146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morrison TE, Whitmore AC, Shabman RS, Lidbury BA, Mahalingam S, Heise MT (2006) Characterization of Ross River virus tropism and virus-induced inflammation in a mouse model of viral arthritis and myositis. J Virol 80:737–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi X, Leng L, Wang T, Wang W, Du X, Li J, McDonald C, Chen Z, Murphy JW, Lolis E, Noble P, Knudson W, Bucala R (2006) CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity 25:595–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gregory JL, Leech MT, David JR, Yang YH, Dacumos A, Hickey MJ (2004) Reduced leukocyte-endothelial cell interactions in the inflamed microcirculation of macrophage migration inhibitory factor-deficient mice. Arthritis Rheum 50:3023–3034

    Article  CAS  PubMed  Google Scholar 

  39. Berkova Z, Wang S, Ao X, Wise JF, Braun FK, Rezaeian AH, Sehgal L, Goldenberg DM, Samaniego F (2014) CD74 interferes with the expression of fas receptor on the surface of lymphoma cells. J Exp Clin Cancer Res 33:80

    Article  PubMed  PubMed Central  Google Scholar 

  40. Starlets D, Gore Y, Binsky I, Haran M, Harpaz N, Shvidel L, Becker-Herman S, Berrebi A, Shachar I (2006) Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival. Blood 107:4807–4816

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Mahalingam Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Herrero, L.J., Zaid, A., Mutso, M., Mahalingam, S. (2017). The MIF-CD74 Inflammatory Axis in Alphaviral Infection. In: Bucala, R., Bernhagen, J. (eds) MIF Family Cytokines in Innate Immunity and Homeostasis. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-52354-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52354-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52352-1

  • Online ISBN: 978-3-319-52354-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics