Skip to main content

MIF- and CD74-Dependent Mechanisms

  • Chapter
  • First Online:
MIF Family Cytokines in Innate Immunity and Homeostasis

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

CD74 is a type II cell surface protein that was previously shown to play a role in antigen presentation and as a receptor for the cytokine macrophage migration inhibitory factor (MIF). Studies from recent years demonstrate an important role for CD74 in maintenance of innate and adaptive immune cells. This chapter discusses the MIF/CD74-dependent role in regulating cell survival, metabolism, adhesion, and response to hypoxia in health and disease.

This chapter discusses MIF’s receptor CD74 and their central position in linking innate and adaptive immune response in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones PP, Murphy DB, Hewgill D, Mcdevitt HO (1979) Detection of a common polypeptide-chain in I-a and I-E sub-region Immunoprecipitates. Mol Immunol 16(1):51–60

    Article  PubMed  Google Scholar 

  2. Stockinger B, Pessara U, Lin RH, Habicht J, Grez M, Koch N (1989) A role of Ia-associated invariant chains in antigen processing and presentation. Cell 56(4):683–689

    Article  CAS  PubMed  Google Scholar 

  3. Landsverk OJB, Bakke O, Gregers TF (2009) MHC II and the endocytic pathway: regulation by invariant chain. Scand J Immunol 70(3):184–193

    Article  CAS  PubMed  Google Scholar 

  4. Yamamoto K, Koch N, Steinmetz M, Hammerling GJ (1985) One Gene encodes 2 distinct Ia-associated invariant chains. J Immunol 134(5):3461–3467

    CAS  PubMed  Google Scholar 

  5. Strubin M, Long EO, Mach B (1986) Two forms of the Ia antigen-associated invariant chain result from alternative initiations at two in-phase AUGs. Cell 47:619–625

    Article  CAS  PubMed  Google Scholar 

  6. Koch N, Lauer W, Habicht J, Dobberstein B (1987) Primary structure of the Gene for the murine Ia antigen-associated invariant chains (ii)—an alternatively spliced exon encodes a cysteine-rich domain highly homologous to a repetitive sequence of thyroglobulin. EMBO J 6(6):1677–1683

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Unanue ER (1984) Antigen-presenting function of the macrophage. Annu Rev Immunol 2:395–428

    Article  CAS  PubMed  Google Scholar 

  8. Long EO (1989) Intracellular traffic and antigen processing. Immunol Today 10:232–234

    Article  CAS  PubMed  Google Scholar 

  9. Harding CV, Unanue ER (1990) Cellular mechanisms of antigen processing and the function of class I and II major histocompatibility complex molecules. Cell Regul 1:499–509

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cresswell P (1994) Assembly, transport, and function of MHC class II molecules. Annu Rev Immunol 12:259–293

    Article  CAS  PubMed  Google Scholar 

  11. Sant AJ, Cullen SE, Schwartz BD (1985) Biosynthetic relationships of the chondroitin sulfate proteoglycan with Ia and invariant chain glycoproteins. J Immunol 135:416–422

    CAS  PubMed  Google Scholar 

  12. Sant AJ, Cullen SE, Giacoletto KS, Schwartz BD (1985) Invariant chain is the core protein of the Ia-associated chondroitin sulfate proteoglycan. J Exp Med 162:1916–1934

    Article  CAS  PubMed  Google Scholar 

  13. Miller J, Hatch JA, Simonis S, Cullen SE (1988) Identification of the glycosaminoglycan-attachment site of mouse invariant-chain proteoglycan core protein by site-directed mutagenesis. Proc Natl Acad Sci U S A 85:1359–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Freisewinkel IM, Schenck K, Koch N (1993) The segment of invariant chain that is critical for association with major histocompatibility complex class II molecules contains the sequence of a peptide eluted from class II polypeptides. Proc Natl Acad Sci U S A 90(20):9703–9706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ghosh P, Amaya M, Mellins E, Wiley DC (1995) The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature 378(6556):457–462

    Article  CAS  PubMed  Google Scholar 

  16. Roche PA, Teletski CL, Stang E, Bakke O, Long EO (1993) Cell surface HLA-DR-invariant chain complexes are targeted to endosomes by rapid internalization. Proc Natl Acad Sci U S A 90(18):8581–8585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lotteau V, Teyton L, Peleraux A, Nilsson T, Karlsson L, Schmid SL et al (1990) Intracellular transport of class II MHC molecules directed by invariant chain. Nature 348:600–605

    Article  CAS  PubMed  Google Scholar 

  18. Odorizzi CG, Trowbridge IS, Xue L, Hopkins CR, Davis CD, Collawn JF (1994) Sorting signals in the MHC class II invariant chain cytoplasmic tail and transmembrane region determine trafficking to an endocytic processing compartment. J Cell Biol 126:317–330

    Article  CAS  PubMed  Google Scholar 

  19. Pond L, Kuhn LA, Teyton L, Schutze MP, Tainer JA, Jackson MR et al (1995) A role for acidic residues in di-leucine motif-based targeting to the endocytic pathway. J Biol Chem 270:19989–19997

    Article  CAS  PubMed  Google Scholar 

  20. Roche PA, Cresswell P (1991) Proteolysis of the class II-associated invariant chain generates a peptide binding site in intracellular HLA-DR molecules. Proc Natl Acad Sci U S A 88:3150–3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neefjes JJ, Stollorz V, Peters PJ, Geuze HJ, Ploegh HL (1990) The biosynthetic pathway of MHC class II but not class I molecules intersects the endocytic route. Cell 61:171–183

    Article  CAS  PubMed  Google Scholar 

  22. Matza D, Kerem A, Shachar I (2003) Invariant chain, a chain of command. Trends Immunol 24:246–248

    Article  CAS  Google Scholar 

  23. Naujokas MF, Morin M, Anderson MS, Peterson M, Miller J (1993) The chondroitin sulfate form of invariant chain can enhance stimulation of T cell responses through interaction with CD44. Cell 74:257–268

    Article  CAS  PubMed  Google Scholar 

  24. Henne C, Schwenk F, Koch N, Moller P (1995) Surface expression of the invariant chain (CD74) is independent of concomitant expression of major histocompatibility complex class II antigens. Immunology 84(2):177–182

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Starlets D, Gore Y, Binsky I, Haran M, Harpaz N, Shvidel L et al (2006) Cell surface CD74 initiates a signaling cascade leading to cell proliferation and survival. Blood 107:4807–4816

    Article  CAS  PubMed  Google Scholar 

  26. Stumptner-Cuvelette P, Benaroch P (2002) Multiple roles of the invariant chain in MHC class II function. Biochim Biophys Acta 1542:1–13

    Article  CAS  PubMed  Google Scholar 

  27. Maharshak N, Cohen S, Lantner F, Hart G, Leng L, Bucala R et al (2010) CD74 is a survival receptor on colon epithelial cells. World J Gastroenterol 16(26):3258–3266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J et al (2003) MIF signal transduction initiated by binding to CD74. J Exp Med 197:1467–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Merk M, Zierow S, Leng L, Das R, Du X, Schulte W et al (2011) The D-dopachrome tautomerase (DDT) gene product is a cytokine and functional homolog of macrophage migration inhibitory factor (MIF). Proc Natl Acad Sci U S A 108(34):E577–E585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shachar I, Flavell RA (1996) Requirement for invariant chain in B cell maturation and function. Science 274:106–108

    Article  CAS  PubMed  Google Scholar 

  31. Gore Y, Starlets D, Maharshak N, Becker-Herman S, Kaneyuki U, Leng L et al (2008) Macrophage migration inhibitory factor (MIF) induces B cell survival by activation of a CD74/CD44 receptor complex. J Biol Chem 283:2784–2792

    Article  CAS  PubMed  Google Scholar 

  32. Matza D, Kerem A, Lantner F, Shachar I (2002) Invariant chain induced B cell differentiation requires intramembrane—proteolytic release of the cytosolic domain. Immunity 17:549–560

    Article  CAS  PubMed  Google Scholar 

  33. Schneppenheim J, Dressel R, Huttl S, Lullmann-Rauch R, Engelke M, Dittmann K et al (2013) The intramembrane protease SPPL2a promotes B cell development and controls endosomal traffic by cleavage of the invariant chain. J Exp Med 210(1):41–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gil-Yarom N, Radomir L, Sever L, Kramer MP, Lewinsky H, Bornstein C, Blecher-Gonen R, Barnett-Itzhaki Z, Mirkin V, Friedlander G, Shvidel L, Herishanu Y, Lolis EJ, Becker-Herman S, Amit I, Shachar I (2017) CD74 is a novel transcription regulator. Proc Natl Acad Sci U S A 114(3):562–567. doi:10.1073/pnas.1612195114. Epub 2016 Dec 28.

    Article  CAS  PubMed  Google Scholar 

  35. Lantner F, Starlets D, Gore Y, Flaishon L, Yamit-Hezi A, Dikstein R et al (2007) CD74 induces TAp63 expression leading to B cell survival. Blood 110:4303–4311

    Article  CAS  PubMed  Google Scholar 

  36. Sapoznikov A, Pewzner-Jung Y, Kalchenko V, Krauthgamer R, Shachar I, Jung S (2008) Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches. Nat Immunol 9:388–395

    Article  CAS  PubMed  Google Scholar 

  37. Gordin M, Tesio M, Cohen S, Gore Y, Lantner F, Leng L et al (2010) C-met and its ligand hepatocyte growth factor/scatter factor regulate mature B cell survival in a pathway induced by CD74. J Immunol 185(4):2020–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cohen S, Shoshana OY, Zelman-Toister E, Maharshak N, Binsky-Ehrenreich I, Gordin M et al (2012) The cytokine midkine and its receptor RPTPzeta regulate B cell survival in a pathway induced by CD74. J Immunol 188(1):259–269

    Article  CAS  PubMed  Google Scholar 

  39. van der Voort R, Taher TE, Wielenga VJ, Spaargaren M, Prevo R, Smit L et al (1999) Heparan sulfate-modified CD44 promotes hepatocyte growth factor/scatter factor-induced signal transduction through the receptor tyrosine kinase c-Met. J Biol Chem 274(10):6499–6506

    Article  PubMed  Google Scholar 

  40. Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H (2002) CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev 16(23):3074–3086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Orian-Rousseau V, Morrison H, Matzke A, Kastilan T, Pace G, Herrlich P et al (2007) Hepatocyte growth factor-induced Ras activation requires ERM proteins linked to both CD44v6 and F-actin. Mol Biol Cell 18(1):76–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4(12):915–925

    Article  CAS  PubMed  Google Scholar 

  43. Bertotti A, Comoglio PM (2003) Tyrosine kinase signal specificity: lessons from the HGF receptor. Trends Biochem Sci 28(10):527–533

    Article  CAS  PubMed  Google Scholar 

  44. Zhang YW, Vande Woude GF (2003) HGF/SF-met signaling in the control of branching morphogenesis and invasion. J Cell Biochem 88(2):408–417

    Article  CAS  PubMed  Google Scholar 

  45. Corso S, Comoglio PM, Giordano S (2005) Cancer therapy: can the challenge be MET? Trends Mol Med 11(6):284–292

    Article  CAS  PubMed  Google Scholar 

  46. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M et al (1995) Scatter factor/hepatocyte growth-factor is essential for liver development. Nature 373(6516):699–702

    Article  CAS  PubMed  Google Scholar 

  47. Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T et al (1995) Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373(6516):702–705

    Article  CAS  PubMed  Google Scholar 

  48. Tulasne D, Foveau B (2008) The shadow of death on the MET tyrosine kinase receptor. Cell Death Differ 15(3):427–434

    Article  CAS  PubMed  Google Scholar 

  49. Kadomatsu KJ, Muramatsu T (2004) Midkine and pleiotrophin in neural development and cancer. Cancer Lett 204(2):127–143

    Article  CAS  PubMed  Google Scholar 

  50. Kadomatsu K (2010) Midkine regulation of the renin-angiotensin system. Curr Hypertens Rep 12(2):74–79

    Article  CAS  PubMed  Google Scholar 

  51. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841

    Article  CAS  PubMed  Google Scholar 

  52. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846

    Article  CAS  PubMed  Google Scholar 

  53. Tokoyoda K, Egawa T, Sugiyama T, Choi B, Nagasawa T (2004) Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20:707–718

    Article  CAS  PubMed  Google Scholar 

  54. Mitchell RA, Liao H, Chesney J, Fingerle-Rowson G, Baugh J, David J et al (2002) Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: regulatory role in the innate immune response. Proc Natl Acad Sci U S A 99:345–350

    Article  CAS  PubMed  Google Scholar 

  55. Shi X, Leng L, Wang T, Wang W, Du X, Li J et al (2006) CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity 25(4):595–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bucala R, Shachar I (2014) The integral role of CD74 in antigen presentation, MIF signal transduction, and B cell survival and homeostasis. Mini Rev Med Chem 14(14):1132–1138

    Google Scholar 

  57. Lue H, Kapurniotu A, Fingerle-Rowson G, Roger T, Leng L, Thiele M et al (2006) Rapid and transient activation of the ERK MAPK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on JAB1/CSN5 and Src kinase activity. Cell Signal 18(5):688–703

    Article  CAS  PubMed  Google Scholar 

  58. Liao H, Bucala R, Mitchell RA (2003) Adhesion-dependent signaling by macrophage migration inhibitory factor (MIF). J Biol Chem 278(1):76–81

    Article  CAS  PubMed  Google Scholar 

  59. Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4(1):33–45

    Article  CAS  PubMed  Google Scholar 

  60. Swant JD, Rendon BE, Symons M, Mitchell RA (2005) Rho GTPase-dependent signaling is required for macrophage migration inhibitory factor-mediated expression of cyclin D1. J Biol Chem 280(24):23066–23072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Greer SN, Metcalf JL, Wang Y, Ohh M (2012) The updated biology of hypoxia-inducible factor. EMBO J 31(11):2448–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Keith B, Johnson RS, Simon MC (2012) HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12(1):9–22

    CAS  Google Scholar 

  64. Chowdhury R, Hardy A, Schofield CJ (2008) The human oxygen sensing machinery and its manipulation. Chem Soc Rev 37(7):1308–1319

    Article  CAS  PubMed  Google Scholar 

  65. Semenza GL (2001) HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107(1):1–3

    Article  CAS  PubMed  Google Scholar 

  66. Baugh JA, Gantier M, Li L, Byrne A, Buckley A, Donnelly SC (2006) Dual regulation of macrophage migration inhibitory factor (MIF) expression in hypoxia by CREB and HIF-1. Biochem Biophys Res Commun 347(4):895–903

    Article  CAS  PubMed  Google Scholar 

  67. Larsen M, Tazzyman S, Lund EL, Junker N, Lewis CE, Kristjansen PE et al (2008) Hypoxia-induced secretion of macrophage migration-inhibitory factor from MCF-7 breast cancer cells is regulated in a hypoxia-inducible factor-independent manner. Cancer Lett 265(2):239–249

    Article  CAS  PubMed  Google Scholar 

  68. Oda S, Oda T, Nishi K, Takabuchi S, Wakamatsu T, Tanaka T et al (2008) Macrophage migration inhibitory factor activates hypoxia-inducible factor in a p53-dependent manner. PLoS One 3(5):e2215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Winner M, Koong AC, Rendon BE, Zundel W, Mitchell RA (2007) Amplification of tumor hypoxic responses by macrophage migration inhibitory factor-dependent hypoxia-inducible factor stabilization. Cancer Res 67(1):186–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gaber T, Schellmann S, Erekul KB, Fangradt M, Tykwinska K, Hahne M et al (2011) Macrophage migration inhibitory factor counterregulates dexamethasone-mediated suppression of hypoxia-inducible factor-1 alpha function and differentially influences human CD4+ T cell proliferation under hypoxia. J Immunol 186(2):764–774

    Article  CAS  PubMed  Google Scholar 

  71. Xia W, Xie C, Jiang M, Hou M (2015) Improved survival of mesenchymal stem cells by macrophage migration inhibitory factor. Mol Cell Biochem 404(1–2):11–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mun SH, Oh D, Lee SK (2014) Macrophage migration inhibitory factor down-regulates the RANKL-RANK signaling pathway by activating Lyn tyrosine kinase in mouse models. Arthritis Rheumatol 66(9):2482–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Meyer-Siegler K, Hudson PB (1996) Enhanced expression of macrophage migration inhibitory factor in prostatic adenocarcinoma metastases. Urology 48:448–452

    Article  CAS  PubMed  Google Scholar 

  74. Nishihira J, Ishibashi T, Fukushima T, Sun B, Sato Y, Todo S (2003) Macrophage migration inhibitory factor (MIF): its potential role in tumor growth and tumor-associated angiogenesis. Ann N Y Acad Sci 995:171–182

    Article  CAS  PubMed  Google Scholar 

  75. Bando H, Matsumoto G, Bando M, Muta M, Ogawa T, Funata N et al (2002) Expression of macrophage migration inhibitory factor in human breast cancer: association with nodal spread. Jpn J Cancer Res 93:389–396

    Article  CAS  PubMed  Google Scholar 

  76. Chesney J, Metz C, Bacher M, Peng T, Meinhardt A, Bucala R (1999) An essential role for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth of a murine lymphoma. Mol Med 5:181–191

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bifulco C, McDaniel K, Leng L, Bucala R (2008) Tumor growth-promoting properties of macrophage migration inhibitory factor. Curr Pharm Des 14(36):3790–3801

    Article  CAS  PubMed  Google Scholar 

  78. Meyer-Siegler KL, Leifheit EC, Vera PL (2004) Inhibition of macrophage migration inhibitory factor decreases proliferation and cytokine expression in bladder cancer cells. BMC Cancer 4:34–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Iwashige H, Aridome K et al (2001) Invariant chain expression in gastric cancer. Cancer Lett 168:87–91

    Article  CAS  PubMed  Google Scholar 

  80. Young AN, Amin MB, Moreno CS, Lim SD, Cohen C, Petros JA et al (2001) Expression profiling of renal epithelial neoplasms: a method for tumor classification and discovery of diagnostic molecular markers. Am J Pathol 158:1639–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ioachim HL, Pambuccian SE, Hekimgil M, Giancotti FR, Dorsett BH (1996) Lymphoid monoclonal antibodies reactive with lung tumors. Diagnostic applications. Am J Surg Pathol 20:64–71

    Article  CAS  PubMed  Google Scholar 

  82. Datta MW, Shahsafaei A, Nadler LM, Freeman GJ, Dorfman DM (2000) Expression of MHC class II-associated invariant chain (Ii;CD74) in thymic epithelial neoplasms. Appl Immunohistochem Mol Morphol 8:210–215

    CAS  PubMed  Google Scholar 

  83. Lazova R, Moynes R, May D, Scott G (1997) LN-2 (CD74). A marker to distinguish atypical fibroxanthoma from malignant fibrous histiocytoma. Cancer 79:2115–2124

    Article  CAS  PubMed  Google Scholar 

  84. Tanese K, Hashimoto Y, Berkova Z, Wang Y, Samaniego F, Lee JE et al (2015) Cell surface CD74-MIF interactions drive melanoma survival in response to interferon-gamma. J Invest Dermatol 135(11):2775–2784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Narni F, Kudo J, Mars W, Calabretta B, Florine DL, Barlogie B et al (1986) HLA-DR-associated invariant chain is highly expressed in chronic lymphocytic leukemia. Blood 68:372–377

    CAS  PubMed  Google Scholar 

  86. Veenstra H, Jacobs P, Dowdle EB (1996) Abnormal association between invariant chain and HLA class II alpha and beta chains in chronic lymphocytic leukemia. Cell Immunol 171:68–73

    Article  CAS  PubMed  Google Scholar 

  87. Mizue Y, Nishihira J, Miyazaki T, Fujiwara S, Chida M, Nakamura K et al (2000) Quantitation of macrophage migration inhibitory factor (MIF) using the one-step sandwich enzyme immunosorbent assay: elevated serum MIF concentrations in patients with autoimmune diseases and identification of MIF in erythrocytes. Int J Mol Med 5:397–403

    CAS  PubMed  Google Scholar 

  88. Stein R, Qu Z, Cardillo TM, Chen S, Rosario A, Horak ID et al (2004) Antiproliferative activity of a humanized anti-CD74 monoclonal antibody, hLL1, on B-cell malignancies. Blood 104:3705–3711

    Article  CAS  PubMed  Google Scholar 

  89. Binsky I, Haran M, Starlets D, Gore Y, Lantner F, Harpaz N et al (2007) IL-8 secreted in a macrophage migration-inhibitory factor- and CD74-dependent manner regulates B cell chronic lymphocytic leukemia survival. Proc Natl Acad Sci U S A 104:13408–13413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Binsky I, Lantner F, Grabovsky V, Harpaz N, Shvidel L, Berrebi A et al (2010) TAp63 regulates VLA-4 expression and CLL cell migration to the BM in a CD74 dependent manner. J Immunol 184:4761–4769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wierda WG, Johnson MM, Do KA, Manshouri T, Dey A, O'Brien S et al (2003) Plasma interleukin 8 level predicts for survival in chronic lymphocytic leukaemia. Br J Haematol 120(3):452–456

    Article  PubMed  Google Scholar 

  92. Shimada H, Nabeya Y, Okazumi SI, Matsubara H, Kadomatsu K, Muramatsu T et al (2003) Increased serum midkine concentration as a possible tumor marker in patients with superficial esophageal cancer. Oncol Rep 10(2):411–414

    CAS  PubMed  Google Scholar 

  93. Obata Y, Kikuchi S, Lin Y, Yagyu K, Muramatsu T, Kumai H (2005) Serum midkine concentrations and gastric cancer. Cancer Sci 96(1):54–56

    Article  CAS  PubMed  Google Scholar 

  94. Rawnaq T, Kunkel M, Bachmann K, Simon R, Zander H, Brandl S et al (2011) Serum midkine correlates with tumor progression and Imatinib response in gastrointestinal stromal tumors. Ann Surg Oncol 18:559–565

    Article  PubMed  Google Scholar 

  95. Ikematsu S, Yano A, Aridome K, Kikuchi M, Kumai H, Nagano H et al (2000) Serum midkine levels are increased in patients with various types of carcinomas. Br J Cancer 83(6):701–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Calpe S, Wang NH, Romero X, Berger SB, Lanyi A, Engel P et al (2008) The SLAM and SAP gene families control innate and adaptive immune responses. Adv Immunol 97:177–250

    Article  CAS  PubMed  Google Scholar 

  97. Cannons JL, Qi H, Lu KT, Dutta M, Gomez-Rodriguez J, Cheng J et al (2010) Optimal germinal center responses require a multistage T cell: B cell adhesion process involving Integrins, SLAM-associated protein, and CD84. Immunity 32(2):253–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sintes J, Romero X, de Salort J, Terhorst C, Engel P (2010) Mouse CD84 is a pan-leukocyte cell-surface molecule that modulates LPS-induced cytokine secretion by macrophages. J Leukoc Biol 88:687–697

    Article  CAS  PubMed  Google Scholar 

  99. Binsky-Ehrenreich I, Marom A, Sobotta MC, Shvidel L, Berrebi A, Hazan-Halevy I et al (2014) CD84 is a survival receptor for CLL cells. Oncogene 33:1006–1016

    Article  CAS  PubMed  Google Scholar 

  100. Berkova Z, Wang S, Ao X, Wise JF, Braun FK, Rezaeian AH et al (2014) CD74 interferes with the expression of fas receptor on the surface of lymphoma cells. J Exp Clin Cancer Res 33:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Burton JD, Ely S, Reddy PK, Stein R, Gold DV, Cardillo TM et al (2004) CD74 is expressed by multiple myeloma and is a promising target for therapy. Clin Cancer Res 10(19):6606–6611

    Article  CAS  PubMed  Google Scholar 

  102. Stein R, Mattes MJ, Cardillo TM, Hansen HJ, Chang CH, Burton J et al (2007) CD74: a new candidate target for the immunotherapy of B-cell neoplasms. Clin Cancer Res 13(18):5556S–5563S

    Article  CAS  PubMed  Google Scholar 

  103. Gold DV, Stein R, Burton J, Goldenberg DM (2010) Enhanced expression of CD74 in gastrointestinal cancers and benign tissues. Int J Clin Exp Pathol 4(1):1–12

    Google Scholar 

  104. Zeiner PS, Preusse C, Blank AE, Zachskorn C, Baumgarten P, Caspary L et al (2015) MIF receptor CD74 is restricted to microglia/macrophages, associated with a M1-polarized immune milieu and prolonged patient survival in gliomas. Brain Pathol 25(4):491–504

    Article  CAS  PubMed  Google Scholar 

  105. Ghia P, Granziero L, Chilosi M, Caligaris-Cappio F (2002) Chronic B cell malignancies and bone marrow microenvironment. Semin Cancer Biol 12:149–155

    Article  PubMed  Google Scholar 

  106. Chappell CP, Clark EA (2008) Survival niches: B cells get MIFed as well as BAFFled by dendritic cells. Immunol Cell Biol 86:487–488

    Article  CAS  PubMed  Google Scholar 

  107. Shanafelt TD, Geyer SM, Bone ND, Tschumper RC, Witzig TE, Nowakowski GS et al (2008) CD49d expression is an independent predictor of overall survival in patients with chronic lymphocytic leukaemia: a prognostic parameter with therapeutic potential. Br J Haematol 140(5):537–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gattei V, Bulian P, Del Principe MI, Zucchetto A, Maurillo L, Buccisano F et al (2008) Relevance of CD49d protein expression as overall survival and progressive disease prognosticator in chronic lymphocytic leukemia. Blood 111(2):865–873

    Article  CAS  PubMed  Google Scholar 

  109. Rossi D, Zucchetto A, Rossi FM, Capello D, Cerri M, Deambrogi C et al (2008) CD49d expression is an independent risk factor of progressive disease in early stage chronic lymphocytic leukemia. Haematologica 93(10):1575–1579

    Article  CAS  PubMed  Google Scholar 

  110. de la Fuente MT, Casanova B, Garcia-Gila M, Silva A, Garcia-Pardo A (1999) Fibronectin interaction with alpha 4 beta 1 integrin prevents apoptosis in B cell chronic lymphocytic leukemia: correlation with Bcl-2 and Bax. Leukemia 13(2):266–274

    Article  PubMed  CAS  Google Scholar 

  111. de la Fuente MT, Casanova B, Moyano JV, Garcia-Gila M, Sanz L, Garcia-Marco J et al (2002) Engagement of alpha 4 beta 1 integrin by fibronectin induces in vitro resistance of B chronic lymphocytic leukemia cells to fludarabine. J Leukoc Biol 71(3):495–502

    Google Scholar 

  112. Stosic-Grujicic S, Stojanovic I, Nicoletti F (2009) MIF in autoimmunity and novel therapeutic approaches. Autoimmun Rev 8(3):244–249

    Article  CAS  PubMed  Google Scholar 

  113. Rahman A, Isenberg DA (2008) Mechanisms of disease: systemic lupus erythematosus. N Engl J Med 358(9):929–939

    Article  CAS  PubMed  Google Scholar 

  114. Lapter S, Ben-David H, Sharabi A, Zinger H, Telerman A, Gordin M et al (2011) A role for the B-cell CD74/macrophage migration inhibitory factor pathway in the immunomodulation of systemic lupus erythematosus by a therapeutic tolerogenic peptide. Immunology 132(1):87–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Leng L, Chen L, Fan J, Greven D, Arjona A, Du X et al (2011) A small-molecule macrophage migration inhibitory factor antagonist protects against glomerulonephritis in lupus-prone NZB/NZW F1 and MRL/lpr mice. J Immunol 186:527–538

    Article  CAS  PubMed  Google Scholar 

  116. Waisman A, Shoenfeld Y, Blank M, Ruiz PJ, Mozes E (1995) The pathogenic human monoclonal anti-DNA that induces experimental systemic lupus-erythematosus in mice is encoded by a V(H)4 Gene segment. Int Immunol 7(4):689–696

    Article  CAS  PubMed  Google Scholar 

  117. Luger D, Dayan M, Zinger H, Liu JP, Mozes E (2004) A peptide based on the complementarity determining region 1 of a human monoclonal autoantibody ameliorates spontaneous and induced lupus manifestations in correlation with cytokine immunomodulation. J Clin Immunol 24(6):579–590

    Article  CAS  PubMed  Google Scholar 

  118. Lapter S, Marom A, Meshorer A, Elmann A, Sharabi A, Vadai E et al (2009) Amelioration of brain pathology and behavioral dysfunction in mice with lupus following treatment with a tolerogenic peptide. Arthritis Rheum 60(12):3744–3754

    Article  CAS  PubMed  Google Scholar 

  119. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747

    Article  CAS  PubMed  Google Scholar 

  120. Brosnan CF, Bornstein MB, Bloom BR (1981) The effects of macrophage depletion on the clinical and pathologic expression of experimental allergic encephalomyelitis. J Immunol 126(2):614–620

    CAS  PubMed  Google Scholar 

  121. Bauer J, Huitinga I, Zhao W, Lassmann H, Hickey WF, Dijkstra CD (1995) The role of macrophages, perivascular cells, and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis. Glia 15(4):437–446

    Article  CAS  PubMed  Google Scholar 

  122. Benedek G, Meza-Romero R, Andrew S, Leng L, Burrows GG, Bourdette D et al (2013) Partial MHC class II constructs inhibit MIF/CD74 binding and downstream effects. Eur J Immunol 43(5):1309–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Meza-Romero R, Benedek G, Yu X, Mooney JL, Dahan R, Duvshani N et al (2014) HLA-DRalpha1 constructs block CD74 expression and MIF effects in experimental autoimmune encephalomyelitis. J Immunol 192(9):4164–4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Suhrbier A, La Linn M (2004) Clinical and pathologic aspects of arthritis due to Ross River virus and other alphaviruses. Curr Opin Rheumatol 16(4):374–379

    Article  PubMed  Google Scholar 

  125. Rulli NE, Melton J, Wilmes A, Ewart G, Mahalingam S (2007) The molecular and cellular aspects of arthritis due to alphavirus infections: lesson learned from Ross River virus. Ann N Y Acad Sci 1102:96–108

    Article  CAS  PubMed  Google Scholar 

  126. Suhrbier A, Mahalingam S (2009) The immunobiology of viral arthritides. Pharmacol Ther 124(3):301–308

    Article  CAS  PubMed  Google Scholar 

  127. Herrero LJ, Nelson M, Srikiatkhachorn A, Gu R, Anantapreecha S, Fingerle-Rowson G et al (2011) Critical role for macrophage migration inhibitory factor (MIF) in Ross River virus-induced arthritis and myositis. Proc Natl Acad Sci U S A 108(29):12048–12053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Herrero LJ, Sheng KC, Jian P, Taylor A, Her Z, Herring BL et al (2013) Macrophage migration inhibitory factor receptor CD74 mediates alphavirus-induced arthritis and myositis in murine models of alphavirus infection. Arthritis Rheum 65(10):2724–2736

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hayashi S, Sugiyama T, Asaka M, Yokota K, Oguma K, Hirai Y (1998) Modification of helicobacter pylori adhesion to human gastric epithelial cells by antiadhesion agents. Dig Dis Sci 43(9 Suppl):56S–60S

    CAS  PubMed  Google Scholar 

  130. Beswick EJ, Bland DA, Suarez G, Barrera CA, Fan X, Reyes VE (2005) Helicobacter pylori binds to CD74 on gastric epithelial cells and stimulates interleukin-8 production. Infect Immun 73(5):2736–2743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Beswick EJ, Pinchuk IV, Minch K, Suarez G, Sierra JC, Yamaoka Y et al (2006) The helicobacter pylori urease B subunit binds to CD74 on gastric epithelial cells and induces NF-kappaB activation and interleukin-8 production. Infect Immun 74(2):1148–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Beswick EJ, Reyes VE (2009) CD74 in antigen presentation, inflammation, and cancers of the gastrointestinal tract. WJG Press

    Google Scholar 

  133. Lawrance IC, Fiocchi C, Chakravarti S (2001) Ulcerative colitis and Crohn's disease: distinctive gene expression profiles and novel susceptibility candidate genes. Hum Mol Genet 10(5):445–456

    Article  CAS  PubMed  Google Scholar 

  134. Sun J, Hartvigsen K, Chou MY, Zhang Y, Sukhova GK, Zhang J, Lopez-Ilasaca M, Diehl CJ, Yakov N, Harats D, George J, Witztum JL, Libby P, Ploegh H, Shi GP (2010) Deficiency of antigen-presenting cell invariant chain reduces atherosclerosis in mice. Circulation 122(8):808–820. doi:10.1161/CIRCULATIONAHA.109.891887. Epub 2010 Aug 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L, Kooistra T, Fingerle-Rowson G, Ghezzi P, Kleemann R, McColl SR, Bucala R, Hickey MJ, Weber C (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13(5):587–596. Epub 2007 Apr 15.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idit Shachar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Becker-Herman, S., Gil, N., Radomir, L., Shachar, I. (2017). MIF- and CD74-Dependent Mechanisms. In: Bucala, R., Bernhagen, J. (eds) MIF Family Cytokines in Innate Immunity and Homeostasis. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-52354-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52354-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52352-1

  • Online ISBN: 978-3-319-52354-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics