Skip to main content

Abstract

Spatial trend concept is very useful in order to depict the systematic variations of the phenomenon concerned over a region based on geographical locations or as in this book based on two independent variables that may be any other two event records. Different types of spatial trend alternatives are presented visually and then their mathematical solutions under the title of trend surface analysis is presented with derivation of the necessary spatial regression analysis approach. Although there are different mapping procedures in this chapter, the most advanced one, namely, Kriging geostatistically developed methodology is explained for the purpose of 3D surface construction. Based on this approach parallel and serial triple diagram models are explained for better interpretations amount three different time series or three time series generated from the same time series at two different lag times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboufirassi, M., & Marino, M. A. (1984). A geostatistically based approach to the identification of aquifer transmissivities in Yolo Basin, California. Mathematical Geology, 16(26), 125–137.

    Article  Google Scholar 

  • Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. San Francisco: Holden-Day.

    Google Scholar 

  • Carr, J. R., Bailey, R. E., & Deng, E. D. (1985). Use of indicator variograms for enhanced spatial analysis. Mathematical Geology, 17(8), 797–812.

    Article  Google Scholar 

  • Clark, I. (1979). The semivariogram—Part 1. Engineering Minning Journal, 180(7), 90–94.

    Google Scholar 

  • Cooley, R. L. (1979). A method of estimating parameters and assessing reliability for models of steady state groundwater flow, 2, Applications of statistical analysis. Water Resource Research, 15, 603–617.

    Article  Google Scholar 

  • David, M. (1977). Geostatistical ore reserve estimation (340 pp). New York: Elsevier.

    Google Scholar 

  • Davis, J. C. (1986). Statistics and data analysis in geology. John-Wiley and Sons, New York.

    Google Scholar 

  • Daley, R. (1991). Atmospheric data analysis (457 pp). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Eddy, A. (1967). The statistical objective analysis of scalar data fields. Journal of Applied Meteorology, 4, 597–609.

    Article  Google Scholar 

  • Gandin, L. S. (1963). Objective analysis of meteorological fields. Leningrad, Gidromet.: Jerusalem.

    Google Scholar 

  • Hoeksema, R. J., & Kitandis, P. K. (1984). An application of the geostatistical approach to the inverse problem in two dimensional groundwater modeling. Water Resources Research, 20(7), 1003–1020.

    Article  Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics (p. 561). New York: Oxford University Press.

    Google Scholar 

  • Journel, A. J. (1985). The deterministic side of geostatistics. Mathematical Geology, 17(1), 1–15.

    Article  Google Scholar 

  • Journel, A. G., & Huijbregts, C. I. (1978). Mining geostatistics. London: Academic Press. 710 pp.

    Google Scholar 

  • Krige, D. G. (1982). Geostatistical case studies of the advantages of log-normal, De Wijsian Kriging with mean for a base metal mine and a gold mine. Mathematical Geology, 14(6), 547–555.

    Article  Google Scholar 

  • Krugen, H. B. (1964). A statistical-dynamic objective analysis scheme. Canadian Meteorological Memories, No. 18, Meteorological Branch, Department of Transport, Toronto, also supplements No. 1 (1967, CMM No. 23) and No. 2 (1969, CMM No. 27).

    Google Scholar 

  • Krugen, H. B. (1969). General and special approaches to the problem of objective analysis of meteorological variables. Quarterly Journal of the Royal Meteorological Society, 95, 21–39.

    Article  Google Scholar 

  • Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58, 1246–1266.

    Article  Google Scholar 

  • Matheron, G. (1965). Les Variables Regionalisees et leur Estimation. Paris: Masson. 306p.

    Google Scholar 

  • Matheron, G., (1969). Le Krigeage universel. les cahiers du centre de morphologie math´ematique de fontainebleau, fascicule 1. Fontainebleau: ´Ecole Nationale Sup´erieure des Mines de Paris.

    Google Scholar 

  • Myers, D. E., Begovich, C. L., Butz, T. R., & Kane, V. E. (1982). Variogram models for regional groundwater geochemical data. Mathematical Geology, 14(6), 629–644.

    Article  Google Scholar 

  • North, G. R., et al. (1982). Sampling errors in the estimation of empirical orthogonal functions. Monthly Weather Review, 110(7), 699–706.

    Article  Google Scholar 

  • Piper, A. M. (1953). A graphic procedure in the chemical interpretation of water analysis. US Geological Survey Groundwater (No. 12). note.

    Google Scholar 

  • Şen, Z. (2008). Spatial modeling in earth sciences (351 pp). Springer.

    Google Scholar 

  • Şen, Z. (2009). Spatial modeling principles in earth sciences. Springer, New York, 351 p.

    Google Scholar 

  • Thiebaux, H. J., Pedder, M. A. (1987). Spatial objective analysis, in with applications in atmospheric science (299 pp). London: Elsevier.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zekâi Şen .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Şen, Z. (2017). Spatial Trend Analysis. In: Innovative Trend Methodologies in Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-52338-5_6

Download citation

Publish with us

Policies and ethics